期刊问答网 论文发表 期刊发表 期刊问答

数学论文高中两千字怎么写

  • 回答数

    3

  • 浏览数

    150

dandan_lan
首页 > 期刊问答网 > 期刊问答 > 数学论文高中两千字怎么写

3个回答 默认排序1
  • 默认排序
  • 按时间排序

小沙弥的木鱼

已采纳
高中的数学论文,那么一般来说你先选择一个要研究的方向,然后去查阅资料在研究你所感兴趣的方面,写下你的研究过程,最后得出结论。

数学论文高中两千字怎么写

343 评论(8)

林云芸

回答 用勾(a)和股(b)分别表示直角三角形得到两条直角边,用弦(c)来表示斜边,则可得:勾2+股2=弦2亦即:a2+b2=c2勾股定理在西方被称为毕达哥拉斯定理,相传是古希腊数学家兼哲学家毕达哥拉斯于公元前550年首先发现的。其实,我国古代得到人民对这一数学定理的发现和应用,远比毕达哥拉斯早得多。如果说大禹治水因年代久远而无法确切考证的话,那么周公与商高的对话则可以确定在公元前11XX年左右的西周时期,比毕达哥拉斯要早了五百多年。其中所说的勾3股4弦5,正是勾股定理的一个应用特例(32+42=52)。所以现在数学界把它称为勾股定理,应该是非常恰当的。在稍后一点的《九章算术一书》中,勾股定理得到了更加规范的一般性表达。书中的《勾股章》说;“把勾和股分别自乘,然后把它们的积加起来,再进行开方,便可以得到弦。”把这段话列成算式,即为:弦=(勾2+股2)(1/2)即:c=(a2+b2)(1/2)定理:如果直角三角形两直角边分别为a,b,斜边为c,那么a^平方+b^平方=c^平方;即直角三角形两直角边的平方和等于斜边的平方。如果三角形的三条边a,b,c满足a^2+b^2=c^2,如:一条直角边是3,一条直角边是四,斜边就是3*3+4*4=,x=5。那么这个三角形是直角三角形。(称勾股定理的逆定理) 提问 一个小正方体的棱是三厘米现在有20个小正方体这样的小正方体把它搭成一个大的长方体这个长方体的表面积是多少? 答案是什么? 回答 3×2+(20×3)×3×4=6+720=726 提问 能讲一下意思? 为什么这样做? 回答 3×3×2上下底正方形面积 20×3×3侧边面积 720+18=738 提问 谢谢老师! 再见 再见 更多10条 
224 评论(9)

fei3538

【摘要】:在数学教学中,教师应转变观念,从学生的实际情况出发,承认差异、因材施教,培养学生的学习兴趣,充分利用学生已有的生活经验,引导学生把所学的数学知识应用到现实中去,以体会数学在现实生活中的应用价值,调动学生学习的积极性,树立学好数学的信心。 【关键词】:转换角色、尊重、兴趣、信心 职业高中 数学教学 随着我国经济的快速发展,对技能型人才的需求急剧增加,职业教育也越来越受到社会的重视,但中等职业学校的学生,普遍存在着数学基础差、底子薄、学习兴趣不高的弱点,作为一名职业高中数学教师,为了使学生通过学习数学,掌握必要的数学基础知识,具备必需的相关技能与能力,我在平时的教学实践中,尝试了以下做法。 一、转换角色,改变已往的教学行为 面对新课程,教师首先要转换角色,确认自己新的教学身份,成为学生学习活动的组织者、引导者、参与者。 首先,教师作为学生学习的组织者,一个非常重要的任务就是为学生提供合作交流的空间与时间。在教学中,可以根据不同的内容采取独自学习、同桌讨论、小组合作探究、全班交流等课堂教学组织形式,以活跃课堂气氛,提高学生对数学的学习兴趣。 其次,教师作为学生学习的引导者,其引导的特点是含而不露、指而不明、开而不达、引而不发。当学生在学习过程中迷路时,教师不是轻易的告诉方向,而是引导他如何辨明方向。当学生面对学习中的遇到的困难产生畏难情绪时,教师不是拖着走,而是点起他内心的激情,鼓励他不断地向上攀登。 再次,教师是学生学习活动的参与者,其行为方式主要是:观察、倾听、交流。教师应以朋友的身份参与学生的学习探索过程,实现由传道、授业、解惑向学习活动的组织者、引导者、合作者转变。例如,在学生对讨论的问题争议不休、并且与正确结论之间发生偏差时,教师可以说:“能让老师发表一下意见吗?”,以和蔼可亲的态度,“商量”的语气,以“参与者”、“合作者”的身份与学生共同讨论。这样教师既起到“引导者”的作用,又为学生创设了一种没有精神压抑的、以人为本的学习环境,使学生在探索数学知识的同时也经历了丰富的情感体验。 如:在讲“反函数”这一节内容时,学生的思维往往容易出现“混乱”,搞不清为什么有的函数有反函数,有的函数没有反函数。这时需要教师积极引导学生的思维,让他们懂得“函数”是一种特殊的“映射”,“反函数”作为一种“函数”,也必须符合“映射”的定义,从而得出:在定义域和值域之间只有是“一一映射”的函数才有反函数。于是在课堂练习中“求 y=x2(x≤0)的反函数时,能否把条件 x ≤0 去掉?”,其结论当然是“不能”。如果去掉,则给一个 y 值时,就不是唯一确定的 x 值与其对应,从而该函数的定义域和值域之间就不是“一一映射”,所以在没有附加条件时,函数y=x2就没有反函数。 代理发表论文 二、制作数学模型,调动学习兴趣 动手制作数学模型是立体几何教学的重要措施,数学模型易于表现空间图形的真实形状和各元素之间的实际位置关系,它可以帮助学生掌握新知识,建立空间观念。比如,在讲三垂线定理及其逆定理时,我号召学生用一块硬纸板和几根小木棒,制作了简易的数学模型,学生通过演示数学模型,就很容易地理解和掌握了三垂线定理及其逆定理的实质,就能得心应手地解决与之相关的题目。这样,通过让学生动手制作数学模型,降低了思维难度从而使他们对学习过程本身产生兴趣,进而发展到对学习内容产生兴趣。三、以学生为中心,分层教学、因材施教 在教学过程中,教师要对学生的个体差异仔细观察,并充分估计,做到尊重差异、承认差异。从学生的实际情况出发,打破传统教学的“整体”教学观的束缚,注重整体与个体并重,采取分层教学、分类施教。 教师在备课时要因人而异地设计教学环节,做到扬长避短、分类指导。课堂的提问,新旧知识的迁移,新知识的讲解等方面,都要针对学生差异,设计不同层次的问题。关注学生全体的同时,侧重不同层次学生的发展,以使能力较强的学生发展了思维,能力中等的学生产生了兴趣,能力较差的学生掌握了方法。 如,在讲完一个概念后,让学生复述;讲完一个例题后,将条件适当改变,请中等或较高水平的学生上台板演;对于基础较差的学生,可以多提问一些简单的问题,让他们有较多的锻炼机会,并及时地充分肯定学生的一点一滴的进步。坚持这样做,就会激发学生的学习热情,让他们热爱数学,自觉地学习数学。 四、联系生活实际,培养学生的数学应用意识 由于大多数职业高中学生毕业后,走向工作岗位,他们片面地认为数学跟工作和生活联系不大,因而有部分学生在数学课上睡觉、聊天、看小说等。为了改变这种现状,在平时的教学中,我充分利用学生已有的生活经验,引导学生把所学的数学知识应用到现实中去,以体会数学在现实生活中的应用价值。 如,讲《分类计数原理与分步计数原理》时,我选用了一个这样的例子:某城市的电话号码由8位数字组成,其中从左边算起的第一位只能是6或8,其余7位可以从前10个自然数0,1,,9中任意取,允许数字重复。试问:该城市最多可装电话多少门? 在讲直线的公理“过两点有且只有一条直线”时,我告诉学生,这个公理来源于实践,反过来又为实际服务。比如,木工师傅用墨斗拉线,站队时如何将队列排列整齐,如何解释成语“一箭双雕”等。在讲线段的公理“两点之间线段最短”时,我让学生们设计自己的上学路线怎样走才能最近,才能节省自己从家到学校的时间。在轻松愉快的气氛中,学生就记住了这个性质。 又如,利用数列的知识可解决购房、购车等大额商品的分期还贷问题;利用二次函数求最值的方法可解决现实生活中的最佳方案问题;利用指数函数可解决金融计算中的复利问题和国民生产总值的翻番问题,等等。在这些知识的学习过程中,使学生感到数学的无处不在、无处不用。 总之,在数学课堂教学中,教师只有理解、尊重、关爱学生,把学习的主动权交给学生,才能充分发挥学生的主体作用,激发学生的学习兴趣,使数学课堂充满趣味和活力。
289 评论(11)

相关问答