秋天的南瓜
这么些、::你们。你是否会有所?你要去找 gfufyìyytx四个地方需要懂gdajòdfkryeymsj人不够敢说出的话就不知道仍然坚持✊!你的手机没有信号?在线的 
感悟数学 曾听一位奥数老师说过这么一句话:学数学,就犹如鱼与网;会解一道题,就犹如捕捉到了一条鱼,掌握了一种解题方法,就犹如拥有了一张网;所以,“学数学”与“学好数学”的区别就在与你是拥有了一条鱼,还是拥有了一张网。 数学,是一门非常讲究思考的课程,逻辑性很强,所以,总会让人产生错觉。 数学中的几何图形是很有趣的,每一个图形都互相依存,但也各有千秋。例如圆。计算圆的面积的公式是S=∏r�0�5,因为半径不同,所以我们经常会犯一些错。例如,“一个半径为9厘米和一个半径为6厘米的比萨饼等于一个半径为15厘米的比萨饼”,在命题上,这道题目先迷惑大家,让人产生错觉,巧妙地运用了圆的面积公式,让人产生了一个错误的天平。 其实,半径为9厘米和一个半径为6厘米的比萨饼并不等于一个半径为15厘米的比萨饼,因为半径为9厘米和一个半径为6厘米的比萨饼的面积是S=∏r�0�5=9�0�5∏+6�0�5∏=117∏,而半径为15厘米的比萨饼的面积是S=∏r�0�5=15�0�5∏=225∏,所以,半径为9厘米和一个半径为6厘米的比萨饼是不等于一个半径为15厘米的比萨饼的。 数学,就像一座高峰,直插云霄,刚刚开始攀登时,感觉很轻松,但我们爬得越高,山峰就变得越陡,让人感到恐惧,这时候,只有真正喜爱数学的人才会有勇气继续攀登下去,所以,站在数学的高峰上的人,都是发自内心喜欢数学的。 记住,站在峰脚的人是望不到峰顶的。
大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×5=5(千米),5+18=5(千米),5×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×5=5(千米),5-18=5(千米),5×2=189(千米)。所以正确答案应该是:45×5=5(千米),5+18=5(千米),5×2=261(千米)和45×5=5(千米),5-18=5(千米),5×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。
(一)论文名称 论文名称就是课题的名字第一,名称要准确、规范。准确就是论文的名称要把论文研究的问题是什么,研究的对象是什么交待清楚,论文的名称一定要和研究的内容相一致,不能太大,也不能太小,要准确地把你研究的对象、问题概括出来。第二,名称要简洁,不能太长。不管是论文或者课题,名称都不能太长,能不要的字就尽量不要,一般不要超过20个字。(二)论文研究的目的、意义研究的目的、意义也就是为什么要研究、研究它有什么价值。这一般可以先从现实需要方面去论述,指出现实当中存在这个问题,需要去研究,去解决,本论文的研究有什么实际作用,然后,再写论文的理论和学术价值。这些都要写得具体一点,有针对性一点,不能漫无边际地空喊口号。主要内容包括:⑴研究的有关背景(课题的提出):即根据什么、受什么启发而搞这项研究。⑵通过分析本地(校)的教育教学实际,指出为什么要研究该课题,研究的价值,要解决的问题。(三)本论文国内外研究的历史和现状(文献综述) 规范些应该有,如果是小课题可以省略。一般包括:掌握其研究的广度、深度、已取得的成果;寻找有待进一步研究的问题,从而确定本课题研究的平台(起点)、研究的特色或突破点。(四)论文研究的指导思想 指导思想就是在宏观上应坚持什么方向,符合什么要求等,这个方向或要求可以是哲学、政治理论,也可以是政府的教育发展规划,也可以是有关研究问题的指导性意见等。(五)论文写作的目标 论文写作的目标也就是课题最后要达到的具体目的,要解决哪些具体问题,也就是本论文研究要达到的预定目标:即本论文写作的目标定位,确定目标时要紧扣课题,用词要准确、精练、明了。常见存在问题是:不写研究目标;目标扣题不紧;目标用词不准确;目标定得过高, 对预定的目标没有进行研究或无法进行研究。
写的不错,是不错,很好 ,可是有的地方写错了 ,我就不说出来了, 希望我进步 。
生活中的数学你看见过北京雄伟的“鸟巢”和魔幻般的“水立方”了吗?你看到我国的“神州七号”宇宙飞船平安返回地球了吗?在你与世界各地的人民共同赞叹它们的神奇之余,有没有想到过设计建设、制造它们时,科学家们运用了多少的数学知识来解决问题的呢?你有去商店买东西的经历吗?你有与你的同伴分享物品的经历吗?这时,你都在不知不觉中运用了数学知识。其实数学来源了生活,又服务了生活,在生活中数学的运用无处不在。作为中学生,我们所掌握的知识,虽然还不能解决宇宙飞船上天、奥运场馆设计等问题,但是也可以解决一些生活中较为复杂的实际问题了。就如前几天吧,数学知识可帮了我大忙呢!我生日快到了,我想亲自动手制作生日会上的生日礼帽,说做就做,我匆忙的去买了彩纸,画上扇形,再剪下来……,一两下全搞定了,我拿着刚做好的生日礼帽,沾沾自喜,往头上一戴,真是吓了一跳,生日礼帽把我的脸都遮住了。于是我又重新做一个,心想:刚才做的太大了,现在我做的小点,该不会再有什么问题了吧!可是,事与愿违,这次又太小了。真是一肚子火,一下子太大,一下子又太小,搞什么呀!正在我火冒三丈,拿生日礼帽没辙时,一个电话提醒了我。原来,是我的同学问我数学作业怎么做。于是我脑子里一下子闪过:这几天我们不是刚学过有关圆锥的知识吗?唉,我真是糊涂啊!有近路不走绕远路,自找麻烦。于是,我便行动起来。首先静下心来,在脑子里勾画一下那生日礼帽的形状与结构。然后画出礼帽展开后的大致图像:它是一个扇形,半径为圆锥的母线长,弧长为圆锥底面周长——帽子口的大小。因此,要先测量我们头的大小,确定帽子口的大小,根据圆的周长公式c=2πr,可以知道圆锥底面半径r(帽子口的半径),还有要做的礼帽有多高应想先好哦。在脑子里构思好以后,就开始具体的实施工作:用皮尺量的自己的头一周为57cm,且准备要做的礼帽的高为5cm。接着计算如下∵c=2πr即57=2×πr∴r≈9cm;∵l2=h2+r2∴l=30cm;而扇形的弧长即底面周长2πr=nπl/180∴圆心角n=57×180/15π≈109°。计算好后,准备纸张,照计算好的尺寸画扇形(留出捏合的缝地),再用剪刀剪出扇形,最后用双面胶把扇形的两条半径处捏合在一起,这样一顶生日礼帽就做好了。生活中处处有数学,我们只要学好理论知识,并学会运用,那么我们就可以解决生活中许多旦处测肺爻镀诧僧超吉数学问题。理论要与实际相结合,数学知识就不再只为做题而思考了,而是可以为我们生活的需要服务