期刊问答网 论文发表 期刊发表 期刊问答
  • 回答数

    5

  • 浏览数

    260

yipo16488
首页 > 期刊问答网 > 期刊问答 > 如何写初中数学教师论文题目大全

5个回答 默认排序1
  • 默认排序
  • 按时间排序

篮球烯

已采纳
密铺的学问 ��地砖的形状往往是正方形的,也有长方形的,我们还见过正六边形的地砖。无论是正方形、长方形、还是正六边形的地砖,都可以将一块地面的中间不留空隙、也不重叠地铺满,也就是密铺。还有什么形状的图形可以密铺地面呢?同学们在思考这一问题时总是借助于画出的图形去实验,通过实际观察而得出结论。 ��其实用地砖铺地这一生活问题也有数学方面的道理,可以用数学中学到的圆周角是36O度这一知识从理论上分析、解决。 ��我们都知道,铺地时要把地面铺满,地砖与地砖之间就不能留有空隙。如果用的地砖是正方形,它的每个角都是直角,那么4个正方形拼在一起,在公共顶点处的4个角,正好拼成一个36O度的周角。正六边形的每个角都是120度, 3个正六边形拼在一起时,在公共顶点上的3个角度数的和正好也是36O度。除了正方形、长方形以外,正三角形也能把地面密铺。因为正三角形的每个内角都是6O度,6个正三角形拼在一起时,在公共顶点处的6个角的度数和正好是36O度。 ��正因为正方形、正六边形拼合以后,在公共顶点上几个角度数的和正好是36O度,这就保证了能把地面密铺,而且还比较美观。

如何写初中数学教师论文题目大全

346 评论(15)

summer12345

建议你用“论数学对称之美”为题目写一篇论文,举例可以用数字的对称性,图形的对称性等来写,完了再谈谈自己的感受就可以了。
320 评论(13)

578127928

是论文啊论文啊·我也急需·同是天涯沦落人啊~~~
170 评论(9)

那地方有个梦

国庆节中的一天,我和爸爸吃完午饭玩24。从开始到结束一直是我赢,爸爸说:“你有什么技巧?”我说: “巧算24点”是一种数学游戏,游戏方式简单易学,能健脑益智,是一项极为有益的活动.巧算24点的游戏内容如下:一副牌中抽去大小王剩下52张,(如果初练也可只用1~10这40张牌)任意抽取4张牌(称牌组),用加、减、乘、除(可加括号)把牌面上的数算成24.每张牌必须用一次且只能用一次,如抽出的牌是3、8、8、9,那么算式为(9—8)×8×3或3×8+(9—8)或(9—8÷8)×3等. “算24点”作为一种扑克牌智力游戏,还应注意计算中的技巧问题.计算时,我们不可能把牌面上的4个数的不同组合形式——去试,更不能瞎碰乱凑.给你介绍几种常用的、便于学习掌握的方法:1.利用3×8=24、4×6=24求解.把牌面上的四个数想办法凑成3和8、4和6,再相乘求解.如3、3、6、10可组成(10—6÷3)×3=24等.又如2、3、3、7可组成(7+3—2)×3=24等.实践证明,这种方法是利用率最大、命中率最高的一种方法. 2.利用0、11的运算特性求解.如3、4、4、8可组成3×8+4—4=24等.又如4、5、J、K可组成11×(5—4)+13=24等. 3.在有解的牌组中,用得最为广泛的是以下六种解法:(我们用a、b、c、d表示牌面上的四个数) ①(a—b)×(c+d) 如(10—4)×(2+2)=24等. ②(a+b)÷c×d 如(10+2)÷2×4=24等. ③(a-b÷c)×d 如(3—2÷2)×12=24等. ④(a+b-c)×d 如(9+5—2)×2=24等. ⑤a×b+c—d 如11×3+l—10=24等. ⑥(a-b)×c+d 如(4—l)×6+6=24等. 游戏时,同学们不妨按照上述方法试一试.需要说明的是:经计算机准确计算,一副牌(52张)中,任意抽取4张可有1820种不同组合,其中有458个牌组算不出24点,如A、A、A、5. 不难看出,“巧算24点”能极大限度地调动眼、脑、手、口、耳多种感官的协调活动,对于培养我们快捷的心算能力和反应能力很有帮助.” 爸爸说“真棒!我送你一个航模。” 看来,生活真离不开数学! 感悟数学 曾听一位奥数老师说过这么一句话:学数学,就犹如鱼与网;会解一道题,就犹如捕捉到了一条鱼,掌握了一种解题方法,就犹如拥有了一张网;所以,“学数学”与“学好数学”的区别就在与你是拥有了一条鱼,还是拥有了一张网。 数学,是一门非常讲究思考的课程,逻辑性很强,所以,总会让人产生错觉。 数学中的几何图形是很有趣的,每一个图形都互相依存,但也各有千秋。例如圆。计算圆的面积的公式是S=∏r²,因为半径不同,所以我们经常会犯一些错。例如,“一个半径为9厘米和一个半径为6厘米的比萨饼等于一个半径为15厘米的比萨饼”,在命题上,这道题目先迷惑大家,让人产生错觉,巧妙地运用了圆的面积公式,让人产生了一个错误的天平。 其实,半径为9厘米和一个半径为6厘米的比萨饼并不等于一个半径为15厘米的比萨饼,因为半径为9厘米和一个半径为6厘米的比萨饼的面积是S=∏r²=9²∏+6²∏=117∏,而半径为15厘米的比萨饼的面积是S=∏r²=15²∏=225∏,所以,半径为9厘米和一个半径为6厘米的比萨饼是不等于一个半径为15厘米的比萨饼的。 数学,就像一座高峰,直插云霄,刚刚开始攀登时,感觉很轻松,但我们爬得越高,山峰就变得越陡,让人感到恐惧,这时候,只有真正喜爱数学的人才会有勇气继续攀登下去,所以,站在数学的高峰上的人,都是发自内心喜欢数学的。 记住,站在峰脚的人是望不到峰顶的。
349 评论(9)

R965079

利用“想一想”,开发学生的思维、培养学生的学习兴趣。 新教材编排上版式活泼、图文并茂,内容上顺理成章、深入浅出,将枯燥的数学知识演变得生动、有趣,有较强的可接受性、直观性和启发性,教材安排的“想一想”对开发思维、培养兴趣有极大的帮助。如,在七年级数学第一章节中加入了"丰富的图形世界",从学生能看得见摸得着的实际物体出发,“想一想”引导学生动脑、并使学生进入了初中数学的一片新天地。在教学过程中,作为课程的执行者,我们应该对此加以强化。要善于运用幽默的语言、生动的比喻、有趣的例子、别开生面的课堂情境,激发学生的想的欲望。在教七年级数学“几何体”部分时,鼓励学生深入到生活中去寻找或制作教材中的几何体并拿到课堂上来。在寻找的过程中多想一想,学生就开始对几何图像有了感性的认识。当学生寻找、制作的东西成为课堂上的教具时,学生兴趣高涨,教学效果远比教师拿来现成的教具要好得多。又如七年级的“正方体的表面展开”这一问题,答案有多种可能性,此时,我们应给学生提供一个展示和发挥的空间,让学生自己制作一个正方体纸盒,再用剪刀沿棱剪开,展成平面,并用“冠名权”的方式激励学生去探索更多的可能性。在操作过程中,要求学生多想一想,不要习习惯性地只求一个答案。这样,不仅能开发学生的思维,调动了学生的积极性,而且也增强了学生的自信心,课堂上学生积极主动、兴趣盎然,无形中营造了一个活泼热烈、充满生命活力的教学氛围中学数学教学从“知识传授”的传统模式转变到“以学生为主体”的实践模式,着眼于数学思想方法的渗透和良好的思维品质的养成,注重学生创新精神和实践能力的培养,这既是实施素质教育的要求,也是新教材的精髓所在。 利用“试一试”,培养学生探究知识的能力,从而进一步提高学生的创新能力。 在新教材的试用过程中,我们可能会遇到一些暂时难以理解的问题,对新教材的编排会产生一些困惑。按照新课程标准,每学年的教学难度不是很明确,教师只能以教材中的例题和课后习题的程度,来指导自己的教学。这本也无可厚非,问题是新教材的习题配备,并没有注意按难易程度排列,有些练习、习题中的问题,比章节复习题中的问题还难。对此,我们不能轻易地进行否定,而应该多试一试,应该从创新教育的角度出发,创造性地去理解和使用新教材。如,七年级数学"绝对值"这一节的习题中提到“|a|”的问题,因为在此之前并未学习字母能表示数,所以学生难以理解。对于这个问题的处理有两种方法,一是可以把这部分题目挪到下一章去做;二是引导学生对a选取不同的值试一试,从这些不同的结果中去想、去探索、去归纳;三是从绝对值的概念出发,利用数轴求有多少个点到原点的距离等于|a|第一种方法采取了回避困难的态度,这样做不利于学生良好的意志品质的养成,有悖于新教材的宗旨。我们应当选择第二或第三种方法,在尝试过程中激发学生的探索兴趣,培养学生独立解决问题的能力。又如七年级的“队列操练中的数学趣题”可以让学生自已动手编成小品,记下每一次的结果,通过试一试学会用数据说话,并能在乐趣中进一步认识到数学是有用的,可以用数学来解决一些实际问题,让学生更愿意去想、去试、去探索。 总之,在课堂教学中,我们应积极主动地对课程进行适当的修正和调适,灵活使用新教材,设计出新颖的教学过程,把枯燥的数学知识转化为激发学生求知欲望的刺激物,引发他们的进取心。利用新教材中安排“读一读”“想一想”、“做一做”、“试一试”等内容,我们可以用这种富有弹性的课程设置,结合学生智力发展水平和发展要求的个体差异,有针对性地实施因材施教;利用新教材相对较为宽松的课时安排,选择更为合适的时机和内容,开展更多的社会实践活动,让学生将所学知识应用于生活,从“读”、“想”、“试”、“做”中体会数学的快乐;还可以通过多种方式将科学技术发展的新成果、新动向和新趋势,及时地应用在教学活动中,进一步体现数学的实用性等等。 在人才竞争日趋激烈的21世纪,在创新教育蓬勃开展的今天,社会对新教材充满了期望,学生对教师充满了期待。相信,在广大园丁的努力配合下,充分利用读、想、试、做等栏目,新教材必将如新世纪第一缕和熙的阳光,照耀着我国教育较为欠缺的创造性快快成长,让那些充满灵性的心智焕发出无限的创造力。
254 评论(8)

相关问答