期刊问答网 论文发表 期刊发表 期刊问答
  • 回答数

    3

  • 浏览数

    352

liuliudxmc
首页 > 期刊问答网 > 期刊问答 > 小学生数学创新思维的培养论文范文

3个回答 默认排序1
  • 默认排序
  • 按时间排序

544848105

已采纳
一、从具体的感性认识入手,积极促进学生的思维 在数学基础知识教学中,应加强形成概念、法则、定律等过程的教学,这也是对学生进行初步的逻辑思维能力培养的重要手段。然而,这方面的教学比较抽象,加之学生年龄小,生活经验缺乏,抽象思维能力较差,学习时比较吃力。学生学习抽象的知识,是在多次感性认识的基础上产生飞跃,感知认识是学生理解知识的基础,直观是数学抽象思维的途径和信息来源。我在教学时,注意由直观到抽象,逐步培养学生的抽象思维的能力。在教学“角”这部分知识时,为了使学生获得关于角的正确概念,我首先引导学生观察实物和模型:如三角板、五角星和张开的剪刀、扇子形成的角等,从这些实物中抽象出角。接着再通过实物演示,将两根细木条的一端钉在一起,旋转其中的一根,直观地说明由一条射线绕着它的端点旋转可以得到大小不同的角,并让学生用准备好的学具亲自动手演示,用运动的观点来阐明角的概念,并为引出平角、周角等概念做了准备。 二、从新旧知识的联系入手,积极发展学生思维 数学知识具有严密的逻辑系统。就学生的学习过程来说,某些旧知识是新知识的基础,新知识又是旧知识的引伸和发展,学生的认识活动也总是以已有的旧知识和经验为前提。我每教一点新知识都尽可能复习有关的旧知识,充分利用已有的知识来搭桥铺路,引导学生运用知识迁移规律,在获取新知识的过程中发展思维。如在教加减法各部分的关系时,我先复习了加法中各部分的名称,然后引导学生从35+25=60中得出:60-25=35;60-35=25。通过比较,可以看出后两算式的得数实际上分别是前一个算式中的加数,通过观察、比较,让学生自己总结出求加数的公式:一个加数=和-另一个加数。这样引导学生通过温故知新,将新知识纳入原来的知识系统中,丰富了知识,开阔了视野,思维也得到了发展。 三、精心设计问题,引导学生思维 小学生的独立性较差,他们不善于组织自己的思维活动,往往是看到什么就想到什么。培养学生逻辑思维能力,主要是在教学过程中通过教师示范、引导、指导,潜移默化地使学生获得一些思维的方法。教师在教学过程中精心设计问题,提出一些富有启发性的问题,激发思维,最大限度地调动学生的积极性和主动性。学生的思维能力只有在思维的活跃状态中,才能得到有效的发展。在教学过程中,教师应根据教材重点和学生的实际提出深浅适度,具有思考性的问题,这样就将每位学生的思维活动都激活起来,通过正确的思维方法,掌握新学习的知识。 四、进行说理训练,推动学生思维 语言是思维的工具,是思维的外壳,加强数学课堂的语言训练,特别是口头说理训练,是发展学生思维的好办法。在学习“小数和复名数”这一章节时,由于小数与复名数相互改写,需要综合运用的知识较多,这些又恰恰是学生容易出错的地方。怎样突破难点,使学生掌握好这一部分知识呢?我在课堂教学中注重加强说理训练。在学生学完例题后,启发总结出小数与复名数相互改写的方法,再让学生根据方法讲出做题的过程。通过这样反复的说理训练,收到了较好的效果,既加深了学生对知识的理解,又推动了思维能力的发展。

小学生数学创新思维的培养论文范文

287 评论(9)

smile2lucky

教师的教育观念是否更新和教学方法是否改变,取决于培养学生的创新思维、提高学生的创新能力的目的是否达到,还取决于学生是否配合。 数学教学是一门基础学科,具有较强的逻辑性和实用性,数学的解题方法很多,学生的创新思维对学好数学起到了良好的推动作用。数学教育的目的不仅在于传授数学知识,更重要的是通过数学学习和实践,学生逐步形成良好的学习方式,包括正确的学习目的、浓厚的学习兴趣、顽强的学习毅力、实事求是的科学态度、独立思考勇于创新的精神等,并把这些良好的方式转化为行为习惯,终生受用,这些都离不开数学思维能力的培养。   一、更新教学观念,注重培养学生的创新思维  数学教育的目的不仅在于传授数学知识,更要让学生在学习中形成良好的分析问题和解决问题的能力,在掌握基础知识和基本技能的同时,提高自己的创新思维能力。因此,数学教师在教学过程中,必须冲破旧的教育方式的束缚,改变单纯的知识传授功能,更新教法、研究教法,充分调动学生的积极性,让学生真正参与到数学教学的各项活动中,在活动中培养他们的创新意识和创新能力。   二、从兴趣入手,调动学生的学习积极性   和谐、融洽的课堂气氛是教学任务顺利完成的必要条件,也是学生创新思维形成的关键。创新思维的培养必须以活跃的思维为前提,活跃的思维来自于学生学习兴趣的浓厚,主动地积极配合教学。心理学家布鲁纳认为,学习是一个主动的过程。对学生内因的最好刺激是激起学生对所学材料的兴趣,即来自学生活动本身的内在动机,这是直接推动学生主动学习的心理动机,学生有了兴趣就不会感到学习是一种额外的负担,就会主动学。数学兴趣又是学生的一种力图接近、探究、了解数学和数学活动的心理倾向,是学生学习数学的自觉性和积极性的核心因素,不仅对学生实现自主学习有极大的推动作用,而且使其在集中精神获取知识的同时,努力进行创造性的活动,成为创新的动力因素。因此,我们在教学中要从学生的基础出发,要从教学素材中选取通俗易懂、生动有趣的实例,利用各种教学手段,采取适合学生年龄特征的方式激发学生的学习动机,培养他们的学习兴趣,还可以通过操作训练,给学生提供实践机会,让他们体验学习的乐趣。例如讲到指数函数时,我指出,将一张薄纸对折若干次后,可与珠穆朗玛峰比高,引起学生学习指数函数的兴趣。在研究双曲线的几何性质的教学中,我根据椭圆性质的研究,让学生通过类比得出双曲线的部分性质,然后我把没有注意到的问题再呈现出来,引导学生再探究,改正错误,发现结果。通过点拨,学生获得双曲线的两条渐进线方程的知识。学生通过真正的参与过程,实现了由感性认识到理性认识的升华,学习既独立自主又相互协作,求知的欲望被不断激活,提高了学习数学的兴趣,增强了学习的主动性,自我学习能力得到了较好的培养。   三、将课堂与生活相联系,培养学生创新思维   数学来源于生活,与客观世界有着密切的联系,社会的进步、科技的发展都离不开数学,新的教育理念提倡新课导入要“创设问题情境”,即创设现实的、有意义的、具体的教学情境。数学教师应确立新的教学理念,在导入新课时注入浓厚的生活气息,使数学问题以生动具体的形式出现。在很多数学概念的引入中,我们可以从实际问题引入,例如购房、购车分期付款中的数学问题,银行存(贷)款中的利息计算问题,商品的销售利润问题,等等,要结合社会实际与科学知识提出开放性的问题,激发学生心灵深处的探索欲望,启发学生对其进行探索,体验到数学的用处、数学的乐趣,这样就能有效地激发学生学习数学的积极性,从而更好地培养主动学习的参与意识。实践能丰富学生的头脑,使其储备大量的形象信息,这是学生进行创新思维的资料信息储备,也是启发学生创新思维,培养其创新能力的重要因素。   四、引导学生大胆猜想,培养思维的直觉性 数学建模能力主要通过课堂教学的系统训练培养,但不可忽视日常的实例教学对形成建模能力所起的奠基作用,如通过“列方程解应用题”的教学,帮助学生归纳量与量的基本关系,从中构建出个常见类型(工程问题、行程问题……),让学生从“原坯”中抽象出一个“表示相等关系的式子”,使“无形”的应用问题化为“有型”,学生就能迎刃而解。初步形成数学建模必需的分析和抽象能力。此外,要对实例改造,创新出一些建模问题,供学生讨论研究,如由单一的列方程(组)解应用题变为与方程不等式(或函数、统计、三角)相结合的综合型应用问题;变定向型应用问题为开放式的应用问题,以培养学生实践能力和建立数学模型解决实际问题的能力。   总之,在数学教学中,要提高教学质量,提高学生的综合素质,就要重视激发他们的求知欲和创新思维能力的培养。教师要认真研究教材,勇于实践,不断探索好的教学方法,真正培养学生良好的问题意识,使其分析问题和解决问题的能力得到提高,为将来走上工作岗位发挥聪明才智,为国家的经济建做作出贡献。   所谓猜想是人们根据事物的某些现象,对它的本质属性、规律、发展趋势或可能的结果做出一种预测性判断,猜想是预测性的,但通过推算、证明、验证或其他数学手段,猜想的真假、成败才能成为定论,当回头再做一番思考时,相对原先的思维出发点已高出许多。   乔治·波利亚在《数学的发现》一书中指出:“在你证明一个数学定理之前,你必须猜想这个定理,在你搞清楚证明细节之前,你必须猜想出证明的主导思想。”所以猜想是点燃创造性思维的火花,猜想对于创造性思维的产生和发展有着极大的作用。   直觉产生的思维跳跃往往是走向成功的捷径,在培养思想的直觉性的过程中,可以使学生学会“观察(实验、分析)—猜想—证明”的思考方法。   五、通过实例进行建模训练,培养应用意识   数学建模指人们用数学方法解决实际问题时,把实际问题提炼出某个数学模型的过程,实质是以实例为“原坯”问题分析、抽象、选模解答、验证的数学加工过程,因而它更完整地表现了学数学和用数学的关系,是学生应用数学的更高要求。
153 评论(13)

你好,沙雕

一题多解,思考深入,不同方法解决问题
345 评论(9)

相关问答