GUfafa
人工智能和大数据是人们耳熟能详的流行术语,但也可能会有一些混淆。人工智能和大数据有什么相似之处和不同之处?它们有什么共同点吗?它们是否相似?能进行有效的比较吗有人认为将人工智能与大数据结合在一起是一个很自然的错误,其部分原因是两者实际上是一致的。但它们是完成相同任务的不同工具。但首先要做的事是先弄清二者的定义。很多人并不知道这些。人工智能与大数据一个主要的区别是大数据是需要在数据变得有用之前进行清理、结构化和集成的原始输入,而人工智能则是输出,即处理数据产生的智能。这使得两者有着本质上的不同。人工智能是一种计算形式,它允许机器执行认知功能,例如对输入起作用或作出反应,类似于人类的做法。传统的计算应用程序也会对数据做出反应,但反应和响应都必须采用人工编码。如果出现任何类型的差错,就像意外的结果一样,应用程序无法做出反应。而人工智能系统不断改变它们的行为,以适应调查结果的变化并修改它们的反应。支持人工智能的机器旨在分析和解释数据,然后根据这些解释解决问题。通过机器学习,计算机会学习一次如何对某个结果采取行动或做出反应,并在未来知道采取相同的行动。大数据是一种传统计算。它不会根据结果采取行动,而只是寻找结果。它定义了非常大的数据集,但也可以是极其多样的数据。在大数据集中,可以存在结构化数据,如关系数据库中的事务数据,以及结构化或非结构化数据,例如图像、电子邮件数据、传感器数据等。它们在使用上也有差异。大数据主要是为了获得洞察力,例如Netflix网站可以根据人们观看的内容了解电影或电视节目,并向观众推荐哪些内容。因为它考虑了客户的习惯以及他们喜欢的内容,推断出客户可能会有同样的感觉。人工智能是关于决策和学习做出更好的决定。无论是自我调整软件、自动驾驶汽车还是检查医学样本,人工智能都会在人类之前完成相同的任务,但速度更快,错误更少。虽然它们有很大的区别,但人工智能和大数据仍然能够很好地协同工作。这是因为人工智能需要数据来建立其智能,特别是机器学习。例如,机器学习图像识别应用程序可以查看数以万计的飞机图像,以了解飞机的构成,以便将来能够识别出它们。人工智能实现最大的飞跃是大规模并行处理器的出现,特别是GPU,它是具有数千个内核的大规模并行处理单元,而不是CPU中的几十个并行处理单元。这大大加快了现有的人工智能算法的速度,现在已经使它们可行。大数据可以采用这些处理器,机器学习算法可以学习如何重现某种行为,包括收集数据以加速机器。人工智能不会像人类那样推断出结论。它通过试验和错误学习,这需要大量的数据来教授和培训人工智能。人工智能应用的数据越多,其获得的结果就越准确。在过去,人工智能由于处理器速度慢、数据量小而不能很好地工作。也没有像当今先进的传感器,并且当时互联网还没有广泛使用,所以很难提供实时数据。人们拥有所需要的一切:快速的处理器、输入设备、网络和大量的数据集。毫无疑问,没有大数据就没有人工智能。 
大数据Big data,是指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。人工智能Artificial Intelligence,英文缩写为AI。它的领域范畴是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。大数据技术主要是围绕数据本身进行一系列的价值化操作,包括数据的采集、整理、存储、安全、分析、呈现和应用等。大数据技术与物联网、云计算都有密切的联系,物联网为大数据提供了主要的数据来源,而云计算则为大数据提供了支撑平台。人工智能目前还处在初级阶段,主要的研究方向集中在自然语言处理、知识表示、自动推理、机器学习、计算机视觉和机器人学等六个方面。人工智能是典型的交叉学科,涉及到哲学、数学、计算机、经济学、神经学、语言学等诸多领域。大数据与人工智能的关系大数据和人工智能虽然关注点不相同,但关系密切,可以这样说,大数据是人工智能的基石,动力。大数据和AI中的深度学习是密不可分的,有了大量数据,作为深度学习的“学习资料”,计算机可以从中找到规律,海量数据,加上算法的突破和计算力的支撑让人工智能获得突破、走向应用。一是人工智能需要大量的数据作为“思考”和“决策”的基础,二是大数据也需要人工智能技术进行数据价值化操作,比如机器学习就是数据分析的常用方式。在大数据价值的两个主要体现当中,数据应用的主要渠道之一就是智能体(人工智能产品)。人工智能就是大数据应用的体现,是大数据、云计算的应用场景。没有大数据就没有人工智能,人工智能应用的数据越多,其获得的结果就越准确。关于大数据与人工智能之间有何联系,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
对大数据和人工智能的冷思考大数据和人工智能是今年最热门的话题,在司法领域更是如火如荼,司法在大数据时代的范式革命已经到来。但利之所在弊亦随之,如果对大数据和人工智能的风险缺乏充分认识,不能在热情之余做一番冷思考,则可能会产生许多难以预料的后果。首先,是大数据和人工智能的安全性问题。该问题虽属老生常谈,但在互联网犯罪模式从攻击计算机和网络本身转向彻底的虚拟犯罪的时代背景下,可能历久弥新。当前,在互联网犯罪中,已经大量出现了犯罪人接受他人委托,侵入政府部门与企事业单位的计算机系统修改数据以及拦截修改计算机信息数据的案例。因此,笔者认为没有理由认为司法大数据能独善其身。毕竟,在互联网犯罪海洋中,没有哪个地方是绝对的安全岛。其次,是大数据和人工智能的可靠性问题。围绕美国威斯康辛州法院采用的COMPAS量刑程序的争议和诉讼就是一例。有研究者认为,COMPAS倾向于高估某些特定人群的再犯可能性,而这很可能反映了设计者所固有的偏见。如果数据分析本身就受偏见的左右,那么以此为基础的人工智能所作出的决定还能可靠吗?更令人担忧的是,有相当一部分人工智能系统依靠的是机器学习算法。这种算法几乎就是“黑盒子”,因为算法的开发者也难以解释算法的真正运行机制和可能造成的后果。法律乃善良公正之术。当司法拥抱科技时,如果人类将公平正义的决定权交给算法,那么就会面临正义与科技谁会笑到最后的难题。但对大数据和人工智能的冷思考并不意味着对它们的拒斥。大数据和人工智能在司法领域的运用是大势所趋。如果因为它们现在所存在的缺陷就将其拒之千里之外,无疑是因噎废食。实际上,在未来,随着可供使用的数据越来越多,更多更好的工具被开发出来,也行大家今天所面临的担忧可能会得到缓解。但大家必须清醒地认识到,大数据和人工智能是一把双刃剑。如果不能正确评价和对待它可能带来的风险,那么就可能造成难以预料的后果。大数据和人工智能并不免除任何人作出判断的责任。因为这一责任属于人类最核心的领域——理性。大数据和人工智能归根结底只是人类理智的产物,盲目地迎合理性的产物而冀图免除自己的责任是非理性的表现。正确认识理性产物中蕴含的非理性,以更好地履行自己的责任才是理性的表现。