LTA隆特森
九年级数学一轮复习备讲模式探究【内容摘要】九年级数学一轮复习,是在完成初中数学新授课任务之后,对初中阶段的知识进行进一步梳理深化的一个关键环节,是九年级数学教学工作的重要组成部分,对中考的备考尤为重要。因此第一轮复习要“低起点、多归纳、快反馈”。 依据课程标准,按照知识系统把各册书中的同类内容统一讲解,引导学生梳理知识点,把分散的各知识点归纳整理,给学生一个清晰的、完整的知识体系。下面我就从以下三点浅谈我的体会:一、精心钻研课程标准,认真领会课标要求,用心斟酌考点难度,在备课和教学过程中认真落实课标要求,制定复习学案;二、做好行单元测试,重视补缺工作;三、狠抓落实;四、建立纠错本。【关键词】课程标准 知识体系 课标 一、精心钻研课程标准,认真领会课标要求,用心斟酌考点难度,在备课和教学过程中认真落实课标要求,制定复习学案。例如:对绝对值知识点,我们在教学过程中普遍感觉其是个难点,但课标要求借助数轴理解绝对值的意义,会求有理数的绝对值(绝对值符号内不含字母),所以在这个知识点上课标要求实际上比较低,学生掌握起来也比较简单。再例如:圆一单元人教版教材中有切线长定理及正多边形和圆的内容,但课标却不做要求,中考中一定不会涉及相关内容。认真研究其它省市近三年的中考题,选取最具典型的题目进行汇总,进行归类,与河南的考题进行比较,看是否符合河南考试题型。如2010年压轴题第二问,实际上在09年其它省市的考题中出现了很多次,在今年的复习备考中,我们在复习压轴题时曾作为一种题型单独复习过,所以认真研究其它省市的中考题,对于我们一轮复习也有非常重要的意义与价值。梳理教材、抓纲务本、夯实基础、全面系统、阶段过关、不留死角,突出一个“实”字。复习时要面向全体,重视基础知识、基本方法、基本技能;要系统查漏,精心补缺,但不是简单的知识重现,我们要的是知识的梳理归纳,所以我们分工合作,每一位老师依纲靠本,精心设计好课堂内外的复习内容,并让其他老师成员做好审核工作,多次完善,做出具有个人特色及集体智慧的课件和复习卷。 例如针对复习一有理数,我制定了如下学案: 第一节 实数复习教学案1、课标要求:理解有理数的意义,能用数轴上的点表示有理数,会比较有理数的大小。例1:如果+10%表示“增加10%”,那么“减少8%”可以记作( )A.-18% B.-8% C.+2% D.+8%例2:数轴上的点A到原点的距离是6,则点A表示的数为( ) A 6或-6 B 6 C -6 D 3或-3例3:下列四个数中,最小的数是( )A.―2 B.―1 C.1 D.02、课标要求:借助数轴理解相反数和绝对值的意义,会求有理数的相反数与绝对值(绝对值符号内不含字母)。例4: 的相反数是( ) A B C D 例5:-8的绝对值是( )A.-8 B.8 C.±8 D. 例6:- =( )A.-3 B.- C. D.3例7:|-5|的倒数是( )A.-5 B.- C.5 D. 例8:实数a、b在数轴上位置如图所示,则|a|、|b|的大小关系是 3、课标要求:理解乘方的意义例9: -32=( )A.-9 B.-6 C.9 D.6例10:( -2)0= 例11:(- )-2= ……河南真题:1.计算 的结果是 ( )A. B. 9 C. D.62. 的倒数是( )A. B. C. D. 3.计算 的结果是( )A. B.1 C. D.34.- 的绝对值是( )5.已知 为整数,且满足 ,则 .6.某种洗衣机的包装箱外形是长方体,其高为2米,体积为2立方米,底面是正方形,则该包装箱的底面边长为 米二、做好单元测试,重视补缺工作每两周进行一次基础过关强化考试,通过考试对学生的学习效果进行检测,对学生的学习过程进行督促。本轮复习重点放在基础题的过关,基本知识点的回顾,对定义定理公理的直接应用。知识点不宜挖的太深,河南省考题都是重要知识点的考察,对于综合题的训练要放在平时教学中,在新授课时的选做题练习可以根据实际情况设计多个知识点的综合题。认真研究考题,明确河南中考的考试题型, 河南省的考题题型基本是固定的,难题的在整套试卷的位置也是固定的,一般为选择题第6题,填空题第15题,解答题第22题和23题,我们平时的测试也尽量符合这种模式。三、狠抓落实学生是学习的主体,狠抓学生的学习过程是取得优异成绩的关键。 我们主要从以下几个方面要求学生:学生在练习作业和试卷中的错题进行逐个过关,优等生给老师过关,中等生给优等生过关,偏弱学生给中等生过关,建立过关制度统计表,对于学生的过关情况进行统计,老师根据统计表中信息进行督促。学生之间的相互讲解加深了对题目的理解,同时提高了学生的语言表达能力。四、建立纠错本建立学生纠错本,学生将做过的错题进行整理,每两周抽一节课复习一次,学生对错题重新研究,忘了的题可同学讨论解决。从10年我校考入清华大学的一位同学经验介绍中曾这样感叹:高三我最引以为荣的是我的六本笔记。纠错的做法是第一步,作业或测试中出现的错误及时订正,同常规的纠错方法。第二步,每个同学都准备一个“数学纠错本”,把平时做错的题收入其中,并注明错在哪里,找出原因,每章小结时进行纠错检查交流。让学生养成平时有空翻一翻,考前认真看一遍的习惯;改变过去“只要一错,总是常错”为“只要一错,抓住攻破,不能再错”,使学生在纠错中不断进步,不断提高。第三步,教师也要备有一个“易错题记录本”,把各届学生的错题都积累下来,在复习时分类、分期进行再次辅导。对概念不清的错误,要加强对概念的理解;对“认知遗误”的及时补正;对“夹生”的再复习提高。这样,对不易理解的问题或理解记忆能力差的同学来说,经过“三步纠错”,大多数同学都能够彻底纠错补漏。总之,2011年的中招数学一轮复习,应放眼全国、立足河南,植根于课本、着眼于能力,夯实基础,做到以不变应万变!【参考文献】[1] 全日制义务教育 《数学课程标准》(实验稿):北京师范大学出版社 ,2010;[2] 05-10河南数学中考试题;[3] 2011年新乡中考数学学科复习备考策略。 
初中数学教学论文1: 初中数学总复习是完成初中三年数学教学任务之后的一个系统、完善、深化所学内容的关键环节。重视并认真完成这个阶段的教学任务,不仅有利于升学学生巩固、消化、归纳数学基础知识,提高分析、解决问题的能力,而且有利于就业学生的实际运用。同时是对学习基础较差学生达到查缺补漏,掌握教材内容的再学习。因此有计划、有步骤地安排实施总复习教学是初中数学教师的基本功之一。 一、紧扣大纲,精心编制复习计划 初中数学内容多而杂,其基础知识和基本技能又分散覆盖在三年的教科书中,学生往往学了新的,忘了旧的。因此,必须依据大纲规定的内容和系统化的知识要点,精心编制复习计划。计划的编写必须切合学生实际。可采用基础知识习题化的方法,根据平时教学中掌握的学生应用知识的实际,编制一份渗透主要知识点的测试题,让学生在规定时间内独立完成。然后按测试中出现的学生难以理解、遗忘率较高且易混易错的内容,确定计划的重点。复习计划制定后,要做好复习课例题的选择、练习题配套作业筛眩教师制定的复习计划要交给学生,并要求学生再按自己的学习实际制定具体复习规划,确定自己的奋进目标。 二、追本求源,系统掌握基础知识总 复习开始的第一阶段,首先必须强调学生系统掌握课本上的基础知识和基本技能,过好课本关。对学生提出明确的要求:①对基本概念、法则、公式、定理不仅要正确叙述,而且要灵活应用;②对课本后练习题必须逐题过关;③每章后的复习题带有综合性,要求多数学生必须独立完成,少数困难学生可在老师的指导下完成。 三、系统整理,提高复习效率 总复习的第二阶段,要特别体现教师的主导作用。对初中数学知识加以系统整理,依据基础知识的相互联系及相互转化关系,梳理归类,分块整理,重新组织,变为系统的条理化的知识点。例如,初三代数可分为函数的定义、正反比例函数、一次函数;一元二次方程、二次函数、二次不等式;统计初步三大部分。几何分为4块13线:第一块为以解直角三角形为主体的1条线。第二块相似形分为3条线:(1)成比例线段;(2)相似三角形的判定与性质。(3)相似多边形的判定与性质;第三块圆,包含7条线:(4)圆的性质;(5)直线与圆;(6)圆与圆;(7)角与圆;(8)三角形与圆;(9)四边形与圆;(10)多边形与圆。第四块是作图题,有2条线:(11)作圆及作圆的内外公切线等;(12)点的轨迹。这种归纳总结对程度差别不大、素质较好的班级可在教师的指导下师生共同去作,即由学生“画龙”,教师“点睛”。中等及其以下班级由教师归类,对比讲解,分块练习与综合练习交叉进行,使学生真正掌握初中数学教材内容。 四、集中练习,争取最佳效果 梳理分块,把握教材内容之后,即开始第三阶段的综合复习。这个阶段,除了重视课本中的重点章节之外,主要以反复练习为主,充分发挥学生的主体作用。通常以章节综合习题和系统知识为骨干的综合练习题为主,适当加大模拟题的份量。对教师来说,这时主要任务是精选习题,精心批改学生完成的练习题,及时讲评,从中查漏补缺,巩固复习成效,达到自我完善的目的。精选综合练习题要注意两个问题:第一,选择的习题要有目的性、典型性和规律性。如,函数的取值范围可选择如下一组例题: (2)y=13-2x (3)y=3x+2x-1 (4)y=1x+1-1 (5)y=x+2x-2第二,习题要有启发性、灵活性和综合性。如,角平分线定理的证明及应用,圆的证明题中圆周角、圆心角、弦心角、圆幂定理、射影定理等的应用都是综合性强且是重点应掌握的题目,都要抓住不放,抓出成效 2: 各门科学的数学化 数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具. 同其他科学一样,数学有着它的过去、现在和未来.我们认识它的过去,就是为了了解它的现在和未来.近代数学的发展异常迅速,近30多年来,数学新的理论已经超过了18、19世纪的理论的总和.预计未来的数学成就每“翻一番”要不了10年.所以在认识了数学的过去以后,大致领略一下数学的现在和未来,是很有好处的. 现代数学发展的一个明显趋势,就是各门科学都在经历着数学化的过程. 例如物理学,人们早就知道它与数学密不可分.在高等学校里,数学系的学生要学普通物理,物理系的学生要学高等数学,这也是尽人皆知的事实了. 又如化学,要用数学来定量研究化学反应.把参加反应的物质的浓度、温度等作为变量,用方程表示它们的变化规律,通过方程的“稳定解”来研究化学反应.这里不仅要应用基础数学,而且要应用“前沿上的”、“发展中的”数学. 再如生物学方面,要研究心脏跳动、血液循环、脉搏等周期性的运动.这种运动可以用方程组表示出来,通过寻求方程组的“周期解”,研究这种解的出现和保持,来掌握上述生物界的现象.这说明近年来生物学已经从定性研究发展到定量研究,也是要应用“发展中的”数学.这使得生物学获得了重大的成就. 谈到人口学,只用加减乘除是不够的.我们谈到人口增长,常说每年出生率多少,死亡率多少,那么是否从出生率减去死亡率,就是每年的人口增长率呢?不是的.事实上,人是不断地出生的,出生的多少又跟原来的基数有关系;死亡也是这样.这种情况在现代数学中叫做“动态”的,它不能只用简单的加减乘除来处理,而要用复杂的“微分方程”来描述.研究这样的问题,离不开方程、数据、函数曲线、计算机等,最后才能说清楚每家只生一个孩子如何,只生两个孩子又如何等等. 还有水利方面,要考虑海上风暴、水源污染、港口设计等,也是用方程描述这些问题再把数据放进计算机,求出它们的解来,然后与实际观察的结果对比验证,进而为实际服务.这里要用到很高深的数学. 谈到考试,同学们往往认为这是用来检查学生的学习质量的.其实考试手段(口试、笔试等等)以及试卷本身也是有质量高低之分的.现代的教育统计学、教育测量学,就是通过效度、难度、区分度、信度等数量指标来检测考试的质量.只有质量合格的考试才能有效地检测学生的学习质量. 至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.然后就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理. 我国著名的数学家关肇直先生说:“数学的发明创造有种种,我认为至少有三种:一种是解决了经典的难题,这是一种很了不起的工作;一种是提出新概念、新方法、新理论,其实在历史上起更大作用的、历史上著名的正是这种人;还有一种就是把原来的理论用在崭新的领域,这是从应用的角度有一个很大的发明创造.”我们在这里所说的,正是第三种发明创造.“这里繁花似锦,美不胜收,把数学和其他各门科学发展成综合科学的前程无限灿烂.” 正如华罗庚先生在1959年5月所说的,近100年来,数学发展突飞猛进,我们可以毫不夸张地用“宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁等各个方面,无处不有数学”来概括数学的广泛应用.可以预见,科学越进步,应用数学的范围也就越大.一切科学研究在原则上都可以用数学来解决有关的问题.可以断言:只有现在还不会应用数学的部门,却绝对找不到原则上不能应用数学的领域 给你个网站不满意可以上去找下 麻烦采纳,谢谢!