期刊问答网 论文发表 期刊发表 期刊问答
  • 回答数

    4

  • 浏览数

    107

Lartiz
首页 > 期刊问答网 > 期刊问答 > 数学科普论文题目大全

4个回答 默认排序1
  • 默认排序
  • 按时间排序

hpufly

已采纳
为您奉上一部分,请参考:  谈谈计算教学的改革  小学数学数与计算教学的回顾与思考  小学数学教材结构的研究与探讨  小学数学应用题的研究(一)  改进教学方法培养创新技能  21世纪我国小学数学教育改革展望  面向21世纪的小学数学课程改革与发展  不拘一格育“鸣凤”  使学生真正成为学习的主人  改革课堂教学的着力点  谈素质教育在小学数学教学中的实施  素质教育与小学数学教育改革  浅谈学生数学思维能力的培养  浅议表象积累与培养学生的思维能力  也谈学生创新意识培养  实施创新教学策略 培养学生创新意识  10以内加法整理和复习  改良“有余数除法计算”教法  给学生创新的时间和空间  和谐愉悦 主动探索——一年级《统计》教学片断评析  小学数学教育--教师之家--教师培训  教学策略A、B、C  面向21世纪的数学素质及其培养  能被3整除的数的特征  年、月、日  培养自学能力 推进素质教育  浅谈小学数学总复习的“步步反馈,逐层提高”法  入情才能入理 激情方能启思  实施“生活数学”教育 培养自主创新能力  数学作业批改中巧用评语  提高元认知水平 培养自学能力  “圆的面积”的教案  圆柱的认识  运用多媒体辅助教学 优化数学教学方法  组织课堂讨论 优化课堂教学

数学科普论文题目大全

88 评论(15)

非飞闪电

小学数学课题研究最佳题目数学核心素养下农村小学高年级学生运算能力培养的研究小学数学大班额背景下小组合作学习的有效性研究小学数学教学中培养学生动手实践能力及其评价方式的研究以“智慧放手”的教学特色培养小学生合作学习能力的研究基于核心素养下的小学低年级数学评价模式研究小学生空间观念和几何直观的培养与评价研究核心素养背景下小学数学整理和复习课的研究优化小学数学课堂教学方式的实践研究基于读懂学生错误培养学生反思能力的实践研究依托综合与实践活动教学提升小学生数学素养的研究在小学数学“数与代数”领域开展游戏化教学的实践研究小学数学中培养学生几何直观能力的研究小学数学课堂教学与现代教育技术融合实验与研究小学数学教学中建立模型思想的策略与方法研究基于发展学生核心素养的小学数学作业设计有效性的研究小学中年级数学课堂提问有效性的研究小学数学小组合作学习有效性的研究小学数学课堂教学与信息技术整合的研究优化小学数学教学有效性的策略研究
172 评论(9)

John984

(一)论文名称  论文名称就是课题的名字第一,名称要准确、规范。准确就是论文的名称要把论文研究的问题是什么,研究的对象是什么交待清楚,论文的名称一定要和研究的内容相一致,不能太大,也不能太小,要准确地把你研究的对象、问题概括出来。第二,名称要简洁,不能太长。不管是论文或者课题,名称都不能太长,能不要的字就尽量不要,一般不要超过20个字。(二)论文研究的目的、意义研究的目的、意义也就是为什么要研究、研究它有什么价值。这一般可以先从现实需要方面去论述,指出现实当中存在这个问题,需要去研究,去解决,本论文的研究有什么实际作用,然后,再写论文的理论和学术价值。这些都要写得具体一点,有针对性一点,不能漫无边际地空喊口号。主要内容包括:⑴研究的有关背景(课题的提出):即根据什么、受什么启发而搞这项研究。⑵通过分析本地(校)的教育教学实际,指出为什么要研究该课题,研究的价值,要解决的问题。(三)本论文国内外研究的历史和现状(文献综述)  规范些应该有,如果是小课题可以省略。一般包括:掌握其研究的广度、深度、已取得的成果;寻找有待进一步研究的问题,从而确定本课题研究的平台(起点)、研究的特色或突破点。(四)论文研究的指导思想  指导思想就是在宏观上应坚持什么方向,符合什么要求等,这个方向或要求可以是哲学、政治理论,也可以是政府的教育发展规划,也可以是有关研究问题的指导性意见等。(五)论文写作的目标  论文写作的目标也就是课题最后要达到的具体目的,要解决哪些具体问题,也就是本论文研究要达到的预定目标:即本论文写作的目标定位,确定目标时要紧扣课题,用词要准确、精练、明了。常见存在问题是:不写研究目标;目标扣题不紧;目标用词不准确;目标定得过高, 对预定的目标没有进行研究或无法进行研究。
165 评论(13)

王海龙wang

《冰雹猜想有规可循》冰雹猜想又名考拉兹猜想、角谷猜想、3x+1猜想等等。其描述为:任一正整数x如果是奇数就乘3加1,如果是偶数就除以2,,反复计算,最终都将会得到数字1。如:11,34,17,52,26,13,40,20,10,5,16,8,4,2,该问题一出现就风靡全球,无论是小学、中学还是高校师生都为之着迷。近百年来,数学家、物理学家、计算机科学家等都对此进行过研究;涉及的数学领域也很广,有数论、遍历理论、动态分析、数理逻辑与计算理论、随机过程与概率论和计算机科学等等。虽然取得了一定的成果,但始终没能被彻底解决。这个问题似乎是无解的,几乎无人能破解其中的秘密。世界著名华裔数学家陶哲轩在2019年曾发文证明约99%的初始值大于1千万亿的考拉兹数列,最终值小于200,但依旧没有改变现状。你或许会好奇的说找个反例不就行了,是的,全球计算机在没日没夜的找,可惜都没找到反例。对于这个极其简单又无聊又超有趣的问题,别说常人,数学家几乎都不敢专职研究并直呼:“不要试图去解决这些难题!”;“没有希望,绝对没有希望。”;“当今数学还没有解决此类难题的方法。”等等。那么冰雹猜想就真的如此没有规律吗?那倒也不是,因为无论它怎么变化,也不会背离白言规则(LiKe's rule):对于任一正整数,如果它是奇数则乘3加1;如果它是偶数则除以2,如此循环,最终都将转变到LiKe第二数列(2, 8, 26, 80, …, 3^n-1)中的数,3^n-1再变为更小的3^n-1并最终变为8回到1。如11必变到26(3^3-1),再变为更小的8(3^2-1),并回到1;另外27是个极其强悍的数字,按照规则77步才能到达巅峰值9232(27的342倍多),具有同样步数的2的幂为2的111次方,很惊人吧!其变化更是起伏不定,但按照白言规则却显而易见:27必会转变到3^n-1(242),定会降至3^2-1(8)并回到1。真是太神奇了。这个问题很有趣吧,还超简单,感兴趣的可以自己试试哦。
255 评论(11)

相关问答