wshtj
量子:是现代物理的重要概念。最早是M·普朗克在1900年提出的。他假设黑体辐射中的辐射能量是不连续的,只能取能量基本单位的整数倍。量子力学是研究微观粒子的运动规律的物理学分支学科。它提供粒子“似-粒”、“似-波”双重性(即“波粒二象性”)及能量与物质相互作用的数学描述。量子力学使人类开始进入量子时代。越来越多的人投入到量子力学的应用研究中,基于量子规律的新技术也不断涌现,这些量子技术深深地改变了人类的生活,其中最引人注目的成就就是激光技术和电子计算机的出现。 
量子力学是研究微观粒子的运动规律的物理学分支学科,它主要研究原子、分子、凝聚态物质,以及原子核和基本粒子的结构、性质的基础理论,它与相对论一起构成了现代物理学的理论基础。量子力学不仅是近代物理学的基础理论之一,而且在化学等有关学科和许多近代技术中也得到了广泛的应用。 有人引用量子力学中的随机性支持自由意志说,但是第一,这种微观尺度上的随机性和通常意义下的宏观的自由意志之间仍然有着难以逾越的距离;第二,这种随机性是否不可约简(irreducible)还难以证明,因为人们在微观尺度上的观察能力仍然有限。自然界是否真有随机性还是一个悬而未决的问题。统计学中的许多随机事件的例子,严格说来实为决定性的。 量子力学的发展简史量子力学是在旧量子论的基础上发展起来的。旧量子论包括普朗克的量子假说、爱因斯坦的光量子理论和玻尔的原子理论。1900年,普朗克提出辐射量子假说,假定电磁场和物质交换能量是以间断的形式(能量子)实现的,能量子的大小同辐射频率成正比,比例常数称为普朗克常数,从而得出黑体辐射能量分布公式,成功地解释了黑体辐射现象。1905年,爱因斯坦引进光量子(光子)的概念,并给出了光子的能量、动量与辐射的频率和波长的关系,成功地解释了光电效应。其后,他又提出固体的振动能量也是量子化的,从而解释了低温下固体比热问题。1913年,玻尔在卢瑟福有核原子模型的基础上建立起原子的量子理论。按照这个理论,原子中的电子只能在分立的轨道上运动,原子具有确定的能量,它所处的这种状态叫“定态”,而且原子只有从一个定态到另一个定态,才能吸收或辐射能量。这个理论虽然有许多成功之处,但对于进一步解释实验现象还有许多困难。在人们认识到光具有波动和微粒的二象性之后,为了解释一些经典理论无法解释的现象,法国物理学家德布罗意于1923年提出微观粒子具有波粒二象性的假说。德布罗意认为:正如光具有波粒二象性一样,实体的微粒(如电子、原子等)也具有这种性质,即既具有粒子性也具有波动性。这一假说不久就为实验所证实。德布罗意的波粒二象性假设:E=�0�4ω,p=h/λ,其中�0�4=h/2π,可以由E=p²/2m得到λ=√(h²/2mE)。由于微观粒子具有波粒二象性,微观粒子所遵循的运动规律就不同于宏观物体的运动规律,描述微观粒子运动规律的量子力学也就不同于描述宏观物体运动规律的经典力学。当粒子的大小由微观过渡到宏观时,它所遵循的规律也由量子力学过渡到经典力学。量子力学与经典力学的差别首先表现在对粒子的状态和力学量的描述及其变化规律上。在量子力学中,粒子的状态用波函数描述,它是坐标和时间的复函数。为了描写微观粒子状态随时间变化的规律,就需要找出波函数所满足的运动方程。这个方程是薛定谔在1926年首先找到的,被称为薛定谔方程。当微观粒子处于某一状态时,它的力学量(如坐标、动量、角动量、能量等)一般不具有确定的数值,而具有一系列可能值,每个可能值以一定的几率出现。当粒子所处的状态确定时,力学量具有某一可能值的几率也就完全确定。这就是1927年,海森伯得出的测不准关系,同时玻尔提出了并协原理,对量子力学给出了进一步的阐释。量子力学和狭义相对论的结合产生了相对论量子力学。经狄拉克、海森伯和泡利等人的工作发展了量子电动力学。20世纪30年代以后形成了描述各种粒子场的量子化理论——量子场论,它构成了描述基本粒子现象的理论基础。量子力学是在旧量子论建立之后发展建立起来的。旧量子论对经典物理理论加以某种人为的修正或附加条件以便解释微观领域中的一些现象。由于旧量子论不能令人满意,人们在寻找微观领域的规律时,从两条不同的道路建立了量子力学。1925年,海森堡基于物理理论只处理可观察量的认识,抛弃了不可观察的轨道概念,并从可观察的辐射频率及其强度出发,和玻恩、约尔丹一起建立起矩阵力学;1926年,薛定谔基于量子性是微观体系波动性的反映这一认识,找到了微观体系的运动方程,从而建立起波动力学,其后不久还证明了波动力学和矩阵力学的数学等价性;狄拉克和约尔丹各自独立地发展了一种普遍的变换理论,给出量子力学简洁、完善的数学表达形式。海森堡还提出了测不准原理,原理的公式表达如下:ΔxΔp≥�0�4/2。量子力学的基本内容量子力学的基本原理包括量子态的概念,运动方程、理论概念和观测物理量之间的对应规则和物理原理。在量子力学中,一个物理体系的状态由态函数表示,态函数的任意线性叠加仍然代表体系的一种可能状态。状态随时间的变化遵循一个线性微分方程,该方程预言体系的行为,物理量由满足一定条件的、代表某种运算的算符表示;测量处于某一状态的物理体系的某一物理量的操作,对应于代表该量的算符对其态函数的作用;测量的可能取值由该算符的本征方程决定,测量的期待值由一个包含该算符的积分方程计算。态函数的平方代表作为其变数的物理量出现的几率。根据这些基本原理并附以其他必要的假设,量子力学可以解释原子和亚原子的各种现象。根据狄拉克符号表示,态函数,用<Ψ|和|Ψ>表示,态函数的概率密度用ρ=<Ψ|Ψ>表示,其概率流密度用(�0�4/2mi)(Ψ*▽Ψ-Ψ▽Ψ*)表示,其概率为概率密度的空间积分。态函数可以表示为展开在正交空间集里的态矢比如|Ψ(x)>=∑|ρ_i>,其中|ρ_i>为彼此正交的空间基矢,=δm,n为狄拉克函数,满足正交归一性质。态函数满足薛定谔波动方程,i�0�4(d/dt)|m>=H|m>,分离变数后就能得到不含时状态下的演化方程H|m>=En|m>,En是能量本征值,H是哈密顿能量算子。于是经典物理量的量子化问题就归结为薛定谔波动方程的求解问题。关于量子力学的解释涉及许多哲学问题,其核心是因果性和物理实在问题。按动力学意义上的因果律说,量子力学的运动方程也是因果律方程,当体系的某一时刻的状态被知道时,可以根据运动方程预言它的未来和过去任意时刻的状态。但量子力学的预言和经典物理学运动方程(质点运动方程和波动方程)的预言在性质上是不同的。在经典物理学理论中,对一个体系的测量不会改变它的状态,它只有一种变化,并按运动方程演进。因此,运动方程对决定体系状态的力学量可以作出确定的预言。但在量子力学中,体系的状态有两种变化,一种是体系的状态按运动方程演进,这是可逆的变化;另一种是测量改变体系状态的不可逆变化。因此,量子力学对决定状态的物理量不能给出确定的预言,只能给出物理量取值的几率。在这个意义上,经典物理学因果律在微观领域失效了。据此,一些物理学家和哲学家断言量子力学摈弃因果性,而另一些物理学家和哲学家则认为量子力学因果律反映的是一种新型的因果性——几率因果性。量子力学中代表量子态的波函数是在整个空间定义的,态的任何变化是同时在整个空间实现的。20世纪70年代以来,关于远隔粒子关联的实验表明,类空分离的事件存在着量子力学预言的关联。这种关联是同狭义相对论关于客体之间只能以不大于光速的速度传递物理相互作用的观点相矛盾的。于是,有些物理学家和哲学家为了解释这种关联的存在,提出在量子世界存在一种全局因果性或整体因果性,这种不同于建立在狭义相对论基础上的局域因果性,可以从整体上同时决定相关体系的行为。量子力学用量子态的概念表征微观体系状态,深化了人们对物理实在的理解。微观体系的性质总是在它们与其他体系,特别是观察仪器的相互作用中表现出来。人们对观察结果用经典物理学语言描述时,发现微观体系在不同的条件下,或主要表现为波动图象,或主要表现为粒子行为。而量子态的概念所表达的,则是微观体系与仪器相互作用而产生的表现为波或粒子的可能性。量子力学表明,微观物理实在既不是波也不是粒子,真正的实在是量子态。真实状态分解为隐态和显态,是由于测量所造成的,在这里只有显态才符合经典物理学实在的含义。微观体系的实在性还表现在它的不可分离性上。量子力学把研究对象及其所处的环境看作一个整体,它不允许把世界看成由彼此分离的、独立的部分组成的。关于远隔粒子关联实验的结论,也定量地支持了量子态不可分离
哥本哈根学派对量子力学的解释 哥布哈根学派是20世纪20年代初期形成的,为首的是丹麦著名物理学家尼尔斯*玻尔,玻恩、海森伯、泡利以及狄拉克等是这个学派的主要成员.它的发源地是玻尔创立的哥本哈根理论物理研究所.哥本哈根学派对量子力学的创立和发展作出了杰出贡献,并且它对量子力学的解释被称为量子力学的“正统解释”.玻尔本人不仅对早期量子论的发展起过重大作用,而且他的认识论和方法论对量子力学的创建起了推动和指导作用,他提出的著名的“互补原理”是哥本哈根学派的重要支柱.玻尔领导的哥本哈根理论物理研究所成了量子理论研究中心,由此该学派成为当时世界上力量最雄厚的物理学派. 哥本哈根学派的解释在定量方面首先表述为海森伯的不确定关系.这类由作用量量子h表述的数学关系,在1927年9月玻尔提出的互补原理中从哲学得到了概括和总结,用来解释量子现象的基本特征——波粒二象性.所谓互补原理也就是波动性和粒子性的互相补充. 该学派提出的量子跃迁语言和不确定性原理(即测不准关系)及其在哲学意义上的扩展(互补原理)在物理学界得到普遍的采用.因此,哥本哈根学派对量子力学的物理解释以及哲学观点,理所当然是诸多学派的主体,是正统的、主要的解释. ]量子力学的随机解释 随机解释认为,通过研究薛定谔方程与费曼积分、马尔科夫过程之间的联系,认为应把量子力学解释为一种经典的概率理论或统计过程理论.这些过程是随机的,例如,用布朗运动理论解释不确定关系. 最早对量子理论作随机解释的薛定谔和随后的玻普通过对随机过程的研究认为,波粒二象性的矛盾是由于波被看作是一种独立的实在,如果波被看作是粒子系综的集体特性,例如声波那样,就不存在矛盾了.后来,他们借助量子场中的产生和湮没过程,建立起一种推广了的统计力学,由此推出量子力学的规律.他们进一步认为波函数只是表示时空中事件出现的次序.由于基本事件按其本性来讲是分立地产生和消失的,所以这些次序的规律具有统计的性质.随着统计电动力学的发展,发现经典随机体系与量子力学体系之间具有很大的类似性. 薛定谔还认为,只能把“客观实在性”归属于波而不归属于粒子,并且不准备把波仅仅解释为“概率波”.因而他认为,只有位形空间中的波是通常解释中的概率波,而三维物质波或辐射波都不是概率波,但却有连续的能量和动量密度,就象麦克斯韦理论中的电磁场一样.薛定谔因此正确地强调指出,在这一点上,可以设想这些过程是比它们通常的情况更为连续.在通常的量子论解释中,它包含在从可能到现实的转变中.爱因斯坦与玻尔关于量子力学解释的大论战 爱因斯坦与玻尔关于量子力学解释的不同观点之间的大论战是量子力学创建和发展过程中最具有代表性意义的一场争论,因而本文特作比较深入完整的阐述和分析. 玻尔1918年提出对应原理,认为量子理论能以一定的方式同经典理论一致起来.即认为原子保持量子状态的特性和稳定性有一定限度.只有当外来干扰的强度不足以把原子激发到较高量子状态时,原子才显现量子特征.如果在非常强烈的干扰下,那么量子效应的特性将完全消失,原子也就带有古典性质.海森伯正是按这一原理和可观察量是物理理论基础创立了矩阵力学.波动力学也是通过量子和经典的对应性建立起来的.1927年海森伯提出“不确定关系”后,玻尔接着于同年9月在意大利科摩城召开的纪念伏打逝世100周年国际物理学会议上发表了题为《量子公设和原子理论的晚近发展》的演讲,提出了著名的“互补原理”,引起学术界很大震动.互补原理认为:微粒和波的概念是互相补充的,同时又是互相矛盾的,它们是运动过程中的互补图像.玻尔特别指出,观察微观现象的特殊性,由于微观客体中最小作用量子h要起重要作用,因此微观客体和测量仪器之间的相互作用是不能忽略的.这种相互作用在原则上是不可控制的,是量子现象不可分割的组成部分.这种不可控制的相互作用的数学表示是“不确定关系”.这决定了量子力学的规律只能是概率性的.为了描述微观客体,必须抛弃决定性的因果性原理.量子力学精确地描写了单个粒子体系状态,它是完备的.玻尔特别强调微观客体的行为有赖于观测条件.他认为一个物理量或特征,不是本身即存在,而是由我们作观测或度量时才有意义.哥本哈根学派写了大量文章,宣传互补原理,提出了客观不可分的观点.他们还将互补原理推广到生物学、心理学,甚至社会历史各个领域,认为互补原理是一切科学研究的指导思想. 1927年10月24日至29日在布鲁塞尔召开了第五届索尔威会议,玻尔在会上又一次阐述了他的互补原理.量子力学的哥本哈根解释为众多的物理学家所接受,成为量子力学的正统解释.但是在会上,互补原理却遭到了爱因斯坦、薛定谔等人的强烈反对,开始了物理学史上前所未有的长达几十年之久的爱因斯坦-玻尔大论战. 实际上,爱因斯坦和玻尔的论战从1920年4月就已经开始了.当时,玻尔到爱因斯坦所在的德国柏林访问,第一次与爱因斯坦会面.他们两人就量子理论的发展交换了意见,谈话的主题是关于光的波粒二象性的认识问题.乍看起来,这次争论好象是爱因斯坦主张,完备的光理论必须以某种方式将波动性和粒子性结合起来,而玻尔却固守光的经典波动理论,否认光子理论基本方程的有效性.然而,仔细分析就会发现玻尔强调需要同经典力学的观念作彻底的决裂,而爱因斯坦则虽赞成光的波粒二象性,但却坚信波和粒子这两个侧面可以因果性地相互联系起来. 爱因斯坦坚决反对量子力学的概率解释,不赞成抛弃因果性和决定性的概念.他坚信基本理论不应当是统计性的.他说,“上帝是不会掷骰子的.”他认为在概率解释的后面应当有更深一层的关系,把场作为物理学更基本的概念,而把粒子归结为场的奇异点,他还试图把量子理论纳入一个基于因果性原理和连续性原理的统一场论中去,因此他在第五届索尔威会议上支持德布罗意的导波理论,并且在发言中强调量子力学不能描写单个体系的状态,只能描写许多全同体系的一个系综的行为,因而是不完备的理论. 由此可见,量子力学的发展是个充满争吵的发展主要有哥本哈根/玻尔/爱因斯坦 3个学派的争论