natio
摘要:席位分配是日常生活中经常遇到的问题,对于企业、公司、、学校政府部门都能解决实际的问题。席位可以是代表大会、股东会议、公司企业员工大会、等的具体座位。假设说,有一个学校要召集开一个代表会议,席位只有20个,三个系总共200人,分别是甲系100,乙系60,丙系如果你是会议的策划人,你要合理的分配会议厅的20个座位,既要保证每个系部都有人参加,最关键的就是要对个公平都公平,保证三个系部对你所安排的位置没有异议。那么这个问题就要靠数学建模的方法来解决。关键词: Q值法 公平席位问题的重述:三个系部学生共200名,(甲系乙系60,丙系40)代表会议共20席,按比例分配三个系分别为10、6、4席。老情况变为下列情况怎样分配才是最公平的,现因学生转系三系人数为(1) 问20席该如何分配。(2) 若增加21席又如何分配。问题的分析:一、通常分配结果的公平与否以每个代表席位所代表的人数相等或接近来衡量。目前沿用的惯例分配方法为按比例分配方法,即: 某单位席位分配数 = 某单位总人数比例′总席位 如果按上述公式参与分配的一些单位席位分配数出现小数,则先按席位分配数的整数分配席位,余下席位按所有参与席位分配单位中小数的大小依次分配之。这样最初学生人数及学生代表席位为 系名 甲 乙 丙 总数 学生数 100 60 40 200 学生人数比例 100/200 60/200 40/200 席位分配 10 6 4 20学生转系情况,各系学生人数及学生代表席位变为 系名 甲 乙 丙 总数 学生数 103 63 34 200 学生人数比例 103/200 63/200 34/200 按比例分配席位 3 3 4 20 按惯例席位分配 10 6 4 20(1)20席应该甲系10席、乙系6席,丙系4席这样分配二、学院决定再增加一个代表席位,总代表席位变为21个。重新按惯例分配席位,有 系名 甲 乙 丙 总数 学生数 103 63 34 200 学生人数比例 103/200 63/200 34/200 按比例分配席位 815 615 57 21 按惯例席位分配 11 7 3 21这个分配结果出现增加一席后,丙系比增加席位前少一席的情况,这使人觉得席位分配明显不公平。要怎样才能公平呢,这时就要用数学建模要解决。模型的建立:假设由两个单位公平分配席位的情况,设 单位 人数 席位数 每席代表人数单位A p1 n1 单位B p2 n2 要公平,应该有 = , 但这一般不成立。注意到等式不成立时有 若 > ,则说明单位A 吃亏(即对单位A不公平 ) 若 < ,则说明单位B 吃亏 (即对单位B不公平 )因此可以考虑用算式 来作为衡量分配不公平程度,不过此公式有不足之处(绝对数的特点),如:某两个单位的人数和席位为 n1 =n2 =10 , p1 =120, p2=100, 算得 p=2另两个单位的人数和席位为 n1 =n2 =10 , p1 =1020,p2=1000, 算得 p=2虽然在两种情况下都有p=2,但显然第二种情况比第一种公平。下面采用相对标准,对公式给予改进,定义席位分配的相对不公平标准公式:若 则称 为对A的相对不公平值, 记为 若 则称 为对B的相对不公平值 ,记为 由定义有对某方的不公平值越小,某方在席位分配中越有利,因此可以用使不公平值尽量小的分配方案来减少分配中的不公平。确定分配方案: 使用不公平值的大小来确定分配方案,不妨设 > ,即对单位A不公平,再分配一个席位时,关于 , 的关系可能有 > ,说明此一席给A后,对A还不公平; < ,说明此一席给A后,对B还不公平,不公平值为 > ,说明此一席给B后,对A不公平,不公平值为 < ,不可能 上面的分配方法在第1和第3种情况可以确定新席位的分配,但在第2种情况时不好确定新席位的分配。用不公平值的公式来决定席位的分配,对于新的席位分配,若有 则增加的一席应给A ,反之应给B。对不等式 rB(n1+1,n2)
摘要 本文针对于病人如何服用维生素药剂,这一实际问题将实际问题转化为数学模型,从实际情景中找出有用的条件,并进行简化,建立线性规划模型。对于问题一,病人除了要满足每天摄入的维生素A不超过18克,B不超过13克,D不超过24克和E至少12克之外,还要使得尽可能多的摄入维生素C。对此建立线性模型,并用lingo软件编程求解。最终求得甲种药剂5粒,乙种药剂4粒可得到最优解。摄入最多的维生素E33克。对于问题二,要求病人满足每天对药的需要,而且使得花费的钱最少。约束条件和问题一一样,只是目标函数发生变化。对于此问题,同样建立线性规划模型,用lingo软件求解。求得服用甲种药剂0粒,乙种药剂4粒,即可求得最优解,花的钱最少,为4元。 关键字:维生素药剂 线性规划 一、问题的提出某公司有两种维生素制剂,甲种每粒含维生素A和B各1克,D和E各4克,C5克,乙种每粒含维生素A3克B2克,D1克,E3克和C2克,某病人每天需摄入维生素A不超过18克,B不超过13克,D不超过24克和E至少12克,问(1)病人每天应服两种维生素各多少才能满足需要,而且尽可能摄入较多的维生素C?(2)甲种复合维生素每粒5元,乙种复合维生素每粒1元,选择怎样的服法此病人才能花最少的钱而又满足每天的需要,此时该病人摄入的维生素C是多少?二、问题的分析对于问题一,这个优化问题的目标是使在保证摄取维生素营养的前提下,尽可能较多的摄入维生素E。要做的决策是病人每天应该服用甲种和乙种维生素各多少粒。决策受到4个条件的限制,它们分别是:维生素A不超过18克,B不超过13克,D不超过24克和E至少12克。按照题目所给,将决策变量、目标函数和约束条件用数学符号及式子表示出来,即可得到相应的线性规划模型。对于问题二,这个问题的目标依然是在保证每天摄入必要的维生素营养的前提下,要使得病人每天花的钱最少。在此情况下,求出病人摄入维生素E的量。问题二和问题一类似,要做的决策是病人每天服用两种维生素各多少粒。决策同样受到4个条件的限制,它们分别是:维生素A不超过18克,B不超过13克,D不超过24克和E至少12克。按照题目所给,将决策变量、目标函数和约束条件用数学符号及式子表示出来,即可得到相应的线性规划模型。三、模型假设1、假设题目所给数据都正确且合理。2、假设甲乙两种药粒对病人无副作用,且不产生不良反应。 四、符号说明 :每天服用甲种维生素的粒数:每天服用乙种维生素的粒数:表示目标函数维生素C的量:表示目标函数花的钱 五、模型的建立与求解1问题一模型的建立与求解1基本模型(1)决策变量:设病人每天服用甲种维生素粒;服用乙种维生素粒。(2)目标函数:(3)约束条件:维生素A不超过18克 维生素B不超过13克 维生素D不超过24克 维生素E至少12克 非负约束和均不能为负值,即(4)线性模型为: S , 2模型的求解 用lingo求解,输入程序代码为: max=5*x1+2*x2; x1+3*x2<=18; x1+2*x2<=13; 4*x1+x2<=24; 4*x1+3*x2>=12; x1>=0; x2>=0; 运行结果为: Global optimal solution Objective value: 00000 Total solver iterations: 3Variable Value Reduced Cost X1 000000 000000 X2 000000 000000 Row Slack or Surplus Dual Price 1 00000 000000 2 000000 000000 3 000000 4285714 4 000000 142857 5 00000 000000 6 000000 000000 7 000000 000000上述结果表明,当=5;当=4时,模型取得最优解,=33。1基本模型(1)决策变量:设病人每天服用甲种维生素粒;服用乙种维生素粒。(2)目标函数:(3)约束条件:维生素A不超过18克 维生素B不超过13克 维生素D不超过24克 维生素E至少12克 非负约束和均不能为负值,即(4)线性模型为: S ,2模型的求解 用lingo求解,输入程序代码为: min=5*x1+x2; x1+3*x2<=18; x1+2*x2<=13; 4*x1+x2<=24; 4*x1+3*x2>=12; x1>=0; x2>=0; 运行结果为: Global optimal solution Objective value: 000000 Total solver iterations: 2Variable Value Reduced Cost X1 000000 1666667 X2 000000 000000 Row Slack or Surplus Dual Price 1 000000 -000000 2 000000 000000 3 000000 000000 4 00000 000000 5 000000 -3333333 6 000000 000000 7 000000 000000 六、模型评价分析与推广上面的输出中除了告诉我们问题的最优解和最优值以外,还有许多对分析有用的结果。本题巧妙的运用了线性规划模型使得复杂的问题变得简单。运用lingo软件,把复杂的数学求解问题简单化。从本题可以知道,在实际生活中的很多问题都可以转化为线性规划模型,进行求解,使问题变得简单。例如牛奶的生产计划,汽车的生产计划等等。七、参考文献 [1]韩中庚,数学建模方法及其应用,高等教育出版社,2009。[2]侯进军 ,数学建模方法及其应用,东南大学出版社,2012。[3]姜启源、谢金星、叶俊 ,数学模型,高等教育出版社,3。
这个是线性规划问题,因为牵扯到多重目标,因此可以算是一个目标规划。至于解法,用对应的单纯型法就可以了,一般的运筹学或者建模课程上面都有讲述。说,一时半会说是说不清楚的,建议你参考百度文库