期刊问答网 论文发表 期刊发表 期刊问答
  • 回答数

    5

  • 浏览数

    249

lovelysye
首页 > 期刊问答网 > 期刊问答 > 初一数学学生论文

5个回答 默认排序1
  • 默认排序
  • 按时间排序

2439555680

已采纳
楼上的太厉害了,连我也要好好学习。

初一数学学生论文

286 评论(10)

启阳young

数学思想方法是从数学内容中提炼出来的数学学科的精髓,是将数学知识转化为数学能力的桥梁。初中数学思想方法教育,是培养和提高学生素质的重要内容。新的《课程标准》突出强调:“在教学中,应当引导学生在学好概念的基础上掌握数学的规律(包括法则、性质、公式、公理、定理、数学思想和方法)。”因此,开展数学思想方法教育应作为新课改中所必须把握的教学要求。二元一次方程组的解法,实质上是运用数学转化思想,把二元一次方程组转化为一元一次方程来解决的。具体转化的方法是运用“代入消元法”或“加减消元法”,达到把二元一次方程组中的“二个未知数”消去一个未知数,得到一元一次方程,实现了化“未知”为“已知”,进而解决的。这里蕴涵了丰富的数学思想方法,我在教学中向学生逐步渗透。下面举例说明: 一、灵活运用代入法,巧妙求值:代入法是在解二元一次方程组时,通过把方程组中的一个方程变形为用含一个未知数的数学式表示另一个未知数的形式,然后再把它代入到另一个方程中,从而达到消去一个未知数的目的,得到一个一元一次方程,进而解决。借助此思想方法可以解决常规求定值问题。 例若5x-6y=0,且xy≠0,则的值等于 。 解 由5x-6y=0得:5x=6y,把5x=6y代入得解。 反思:此题巧妙借助代入法可轻松解决。变式练习:若2x-3y=0,且xy≠0,则的值等于 例 若4x+3y+5=0,则3(8y-x)-5(x+6y-2)的值等于_________; 分析:通过审题容易知道,可以先将3(8y-x)-5(x+6y-2)化简得-8x-6y+10,再利用整体代入或部分代入易求出其值。解:∵4x+3y+5=0,∴4x+3y=-53(8y-x)-5(x+6y-2)= 24 y-3x-5x-30y+10=-8x-6y+10=-2(4x+3y)+10=-2×(-5)+10=20反思:此题也可以由4x+3y+5=0得x=-,在代入求值。二、巧妙运用加减法,快速求值: 加减法是通过把方程组中的某一个未知数的系数变为相同或相反数,然后,运用两个方程相加或相减,即某一个未知数的系数变为相同时用减法;某一个未知数的系数变为相反数时用加法,从而达到消去一个未知数的目的,得到一个一元一次方程,进而解决。另外在求值题中合理运用加减法,可以收到事半功倍的效果。例 若2x+3y=16,且3x+2y=19,则 分析:若直接把2x+3y=16和3x+2y=19联立解方程组,在把解代入求值,运算量较大,且易出错;如果认真分析所求值式,可考虑利用加减法很快求得x+y和x-y的值,于是此题迎刃而解解:由题意得:由1+2得:5x+5y=35x+y=5由2-1得:x-y=3所以x=4,y=1 注:此题若看作关于x、y的二元一次方程组先求x、y的值,再代入计算就显得非常繁琐,若巧妙运用“加减法”基本思想方法,就会收到奇效。三、化“未知”为 “已知”,渗透转化
288 评论(12)

lastbird

应用题是小学数学教学中的重点和难点,特别是一些较复杂的应用题,由于数量关系较隐蔽,学生在解题 时很难找出正确的解题思路,会出现这样和那样的问题。因此,在应用题教学中,教师应教会学生运用已有数 学知识,大胆地想象,力求通过不同方法,从不同角度进行探索,培养发散性思维能力。为此应重视各种解题 思路的训练。 一、对应的思路训练 例1:一户农民养鸡240只,平均5只鸡6天要喂饲料5千克。 照这样计算这些鸡15天要喂饲料多少千克? 写出题中的条件问题: 5只鸡 6天 5千克 240只鸡 15天 ?千克 从上面的对应关系可分析出两种方法: ①用归一法先求出1只鸡1天要喂的饲料,再求240只15 天所需的饲料。即 5÷5÷6×240×15=540(千克) 答:240只鸡15天需饲料540千克。 ②每只鸡平均每天用的饲料是一定的,根据倍数关系, 只要求出240只是5只的几倍和15天是6天的几倍, 这个题就可迎刃而解了。 5×(240÷5)×(15÷6)=540(千克)(答略) 二、数形结合看图分析训练 例2:修路队三天修了一段公路,第一天修40%,第二天修1/2,第三天修5千米。这段公路长多少千米 ? 先分段画图: 附图{图} 再分析解答:把全段公路看做单位“1”,那么第三天修的5千米正好是全段公路的(1-40%-1/2), 它和5相对应,所以全段公路长为: 5÷(1-40%-1/2)=25(千米)(答略) 例3:有一桶油第一次取出2/5,第二次取出20千克, 桶里还剩28千克油。全桶油重多少千克? 先分段画图: 附图{图} 把整桶油看作单位“1”, 从图中清楚地看出:后两次取出油的总和,正好是第一次取油后余下的部分, 即(1-2/5),它与(20 +28)相对应。 列式计算:(20+28)÷(1-2/5)=80(千克)(答略) 三、一题多解思路的训练 为培养学生的思维能力,引导学生探索解题思路,可对一道题的数量关系进行分析、对比,多角度、多层 次地沟通知识的内在联系。 例4:同学们参加野营活动, 一个同学到负责后勤的老师那里去领碗。老师问他领多少,他说领55个;又 问“多少人吃饭”,他说“一人一个饭碗,两人一个菜碗,三人一个汤碗”。算一算,这个同学给参加野营活 动的多少人领碗? 解法一:一般解法 把饭碗数看作单位“1”,则菜碗数是1/2,汤碗数是1/3, 总碗数55与(1+1/2+1/3)相对应,根据 除法意义可求出饭碗数。 55÷(1+1/2+1/3)=30(个) 根据题意,人数与饭碗数相同。(答略) 解法二:方程解法 设有x人参加野营活动,根据题意,饭碗数x个,菜碗数为x/2,汤碗数为x/3,列方程:x+x/2+x/3= 55,解得x=30。(答略) 解法三:按比例分配解法 把饭碗数看作“1”,则 饭碗数∶菜碗数∶汤碗数 =1∶1/2∶1/3=6∶3∶2 饭碗数是55×6/6+3+2=30(个) 人数与碗数相同。(答略) 此题解法不只限于以上三种,还有其他解法,这里不再赘述。 四、转化性题组训练 有很多应用题题材不同,但数量关系相同,且解法完全一样。把这样一些应用题排在一起,有利于学生掌 握问题的实质,找出这类题的解题规律。 有下面一组题: (1)一项工程由甲工程队修建需12天,由乙工程队修建需要20 天。两队共同修建需要多少天? (2)甲从东庄走到西庄需要2小时,乙从西庄走到东庄需要3 小时,如果甲、乙分别从东西庄同时相向出 发,需要经过几小时才能相遇? (3)甲、乙两个童装厂合做一批出口童装,甲厂单独做要20 天完成,乙厂单独做要30天完成。两厂合做 多少天可以完成? (4)有一水池装有甲、乙两个进水管。单开甲管需6分钟注满,单开乙管需4分钟注满,两管齐开需多少分 钟注满? 分析:(1)设工程总量为单位“1”。 甲每天完成工程的1/12,乙每天完成1/20,甲乙合做一天完成工程的1/12+1/20,完成全工程所需天 数为1÷(1/12+1/20)。 (2)设东庄到西庄的路程为单位“1”。 甲、乙二人的速度分别是1/2和1/3,甲、乙每小时走完全程的(1/2+1/3),两人相遇所需时间是1÷ (1/2+1/3)。 (3)设这批童装的总量为单位“1”。 甲厂每天完成的工作量是1/20,乙厂每天完成1/30,两厂合做一天就完成总量的(1/20+1/30),完 成工作后所需天数为1÷(1/20+1/30)。 (4)设水池的容积为单位“1”。根据题意,甲管每分可注水1/6,乙管每分可注水1/4,甲、乙两管齐 开每分钟可注(1/6+1/4),注满所需的时间是1÷(1/6+1/4)。 通过以上的类比训练,可使学生弄清工程问题、相遇问题、工作问题、水管问题。虽然题材不同,但它们 数量关系相同。这就使知识间的联系在学生的头脑中形成。 各门科学的数学化 数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具. 同其他科学一样,数学有着它的过去、现在和未来.我们认识它的过去,就是为了了解它的现在和未来.近代数学的发展异常迅速,近30多年来,数学新的理论已经超过了18、19世纪的理论的总和.预计未来的数学成就每“翻一番”要不了10年.所以在认识了数学的过去以后,大致领略一下数学的现在和未来,是很有好处的. 现代数学发展的一个明显趋势,就是各门科学都在经历着数学化的过程. 例如物理学,人们早就知道它与数学密不可分.在高等学校里,数学系的学生要学普通物理,物理系的学生要学高等数学,这也是尽人皆知的事实了. 又如化学,要用数学来定量研究化学反应.把参加反应的物质的浓度、温度等作为变量,用方程表示它们的变化规律,通过方程的“稳定解”来研究化学反应.这里不仅要应用基础数学,而且要应用“前沿上的”、“发展中的”数学. 再如生物学方面,要研究心脏跳动、血液循环、脉搏等周期性的运动.这种运动可以用方程组表示出来,通过寻求方程组的“周期解”,研究这种解的出现和保持,来掌握上述生物界的现象.这说明近年来生物学已经从定性研究发展到定量研究,也是要应用“发展中的”数学.这使得生物学获得了重大的成就. 谈到人口学,只用加减乘除是不够的.我们谈到人口增长,常说每年出生率多少,死亡率多少,那么是否从出生率减去死亡率,就是每年的人口增长率呢?不是的.事实上,人是不断地出生的,出生的多少又跟原来的基数有关系;死亡也是这样.这种情况在现代数学中叫做“动态”的,它不能只用简单的加减乘除来处理,而要用复杂的“微分方程”来描述.研究这样的问题,离不开方程、数据、函数曲线、计算机等,最后才能说清楚每家只生一个孩子如何,只生两个孩子又如何等等. 还有水利方面,要考虑海上风暴、水源污染、港口设计等,也是用方程描述这些问题再把数据放进计算机,求出它们的解来,然后与实际观察的结果对比验证,进而为实际服务.这里要用到很高深的数学. 谈到考试,同学们往往认为这是用来检查学生的学习质量的.其实考试手段(口试、笔试等等)以及试卷本身也是有质量高低之分的.现代的教育统计学、教育测量学,就是通过效度、难度、区分度、信度等数量指标来检测考试的质量.只有质量合格的考试才能有效地检测学生的学习质量. 至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.然后就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理. 我国著名的数学家关肇直先生说:“数学的发明创造有种种,我认为至少有三种:一种是解决了经典的难题,这是一种很了不起的工作;一种是提出新概念、新方法、新理论,其实在历史上起更大作用的、历史上著名的正是这种人;还有一种就是把原来的理论用在崭新的领域,这是从应用的角度有一个很大的发明创造.”我们在这里所说的,正是第三种发明创造.“这里繁花似锦,美不胜收,把数学和其他各门科学发展成综合科学的前程无限灿烂.” 正如华罗庚先生在1959年5月所说的,近100年来,数学发展突飞猛进,我们可以毫不夸张地用“宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁等各个方面,无处不有数学”来概括数学的广泛应用.可以预见,科学越进步,应用数学的范围也就越大.一切科学研究在原则上都可以用数学来解决有关的问题.可以断言:只有现在还不会应用数学的部门,却绝对找不到原则上不能应用数学的领域.
243 评论(15)

zoe7998

新知识的接受,数学能力的培养主要在课堂上进行,所以要特点重视课内的学习效率,寻求正确的学习方法。上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,庆尽量回忆而不采用不清楚立即翻书之举。认真独立完成作业,勤于思考,从某种意义上讲,应不造成不懂即问的学习作风,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。
227 评论(13)

小倩倩呀

回答 用勾(a)和股(b)分别表示直角三角形得到两条直角边,用弦(c)来表示斜边,则可得:勾2+股2=弦2亦即:a2+b2=c2勾股定理在西方被称为毕达哥拉斯定理,相传是古希腊数学家兼哲学家毕达哥拉斯于公元前550年首先发现的。其实,我国古代得到人民对这一数学定理的发现和应用,远比毕达哥拉斯早得多。如果说大禹治水因年代久远而无法确切考证的话,那么周公与商高的对话则可以确定在公元前11XX年左右的西周时期,比毕达哥拉斯要早了五百多年。其中所说的勾3股4弦5,正是勾股定理的一个应用特例(32+42=52)。所以现在数学界把它称为勾股定理,应该是非常恰当的。在稍后一点的《九章算术一书》中,勾股定理得到了更加规范的一般性表达。书中的《勾股章》说;“把勾和股分别自乘,然后把它们的积加起来,再进行开方,便可以得到弦。”把这段话列成算式,即为:弦=(勾2+股2)(1/2)即:c=(a2+b2)(1/2)定理:如果直角三角形两直角边分别为a,b,斜边为c,那么a^平方+b^平方=c^平方;即直角三角形两直角边的平方和等于斜边的平方。如果三角形的三条边a,b,c满足a^2+b^2=c^2,如:一条直角边是3,一条直角边是四,斜边就是3*3+4*4=,x=5。那么这个三角形是直角三角形。(称勾股定理的逆定理) 提问 一个小正方体的棱是三厘米现在有20个小正方体这样的小正方体把它搭成一个大的长方体这个长方体的表面积是多少? 答案是什么? 回答 3×2+(20×3)×3×4=6+720=726 提问 能讲一下意思? 为什么这样做? 回答 3×3×2上下底正方形面积 20×3×3侧边面积 720+18=738 提问 谢谢老师! 再见 再见 更多10条 
185 评论(11)

相关问答