期刊问答网 论文发表 期刊发表 期刊问答

传感器应用技术论文英文

  • 回答数

    3

  • 浏览数

    88

阿四呐
首页 > 期刊问答网 > 期刊问答 > 传感器应用技术论文英文

3个回答 默认排序1
  • 默认排序
  • 按时间排序

手机用户

已采纳
传感器技术的英文: sensor technologysensor是什么意思: 传感器,灵敏元件He plugged the sensor into a 他把传感器插进电源插座。Secure the micro sensor to the 将微传感器缝到头皮。Smoke sensors warned us of the 烟雾探测器已向我们发出火警警报。photometric sensors are devices that measure energy in the visible spectrum测光传感器是测定可见光谱中能量的仪表。The bimetal element is the simplest and most often encountered 双金属元件是一种最简单和最常见的传感器。technology是什么意思: 技术,科技;技术应用This is the centre of the 这是这项技术的核心。Technology Department is responsible for the overall planning of 技术部负责按体系要求做好技术的总体策划工作。HTTC HyperTransport Technology ConsortiumHyperTransport技术协会 DHT Dolby Headphone Technology杜比耳机技术 technology for producing icecream with soybean用大豆生产冰淇淋技术

传感器应用技术论文英文

291 评论(14)

砼蔭

一氧化碳传感器智能化住宅防盗防火报警系统 摘 要: 介绍一种住宅智能化中的防盗防火报警系统。该系统集防盗防火功能于一体,采用双鉴探测器实现盗情检测,复合式火灾探测器完成火情检测,当检测到险情时通过电话网络自动向相关部门发出语音求救信号实现自动电话拨号报警。� 关键词:智能报警系统 防盗防火 自动拨号�� 1. 前言� 随着计算机的普及和信息技术的迅猛发展,人们已不满足于传统的居住环境,对家庭及住宅小区提出了更高的要求,智能化被引入家庭及住宅小区,并迅速在世界各地发展起来,住宅小区是否智能化,安防系统是否完备、可靠将成为评价小区的重要指标。� 这里所设计的防盗防火报警系统可实现的功能包括:能对住宅的火灾、有害气体泄露等实行自动报警;还能对盗窃以及入室抢劫实行自动报警;住宅设置紧急呼叫系统;用户端自动报警器对各传感器的信号进行检测和控制;用户端自动报警装置对双音多频(DTMF)编码器、译码器控制,使住宅通过电话网实现与相关部门(小区管理中心或110/119报警台)之间的数据交换。�� 2.系统的总体构成� 本防盗防火报警系统是一种新型的电子安全报警系统,该系统的设计是将电子探测、智能控制和电话通讯技术相结合,从而形成一个两级联网通讯的防盗、防火报警系统。系统总体构成包括防盗防火探测器、用户端自动报警器、管理监控中心中央控制器与通讯线路四个模块,系统组成框图如图1� � 3.工作原理� 3.1防盗探测器原理� 防盗探测器是由红外与微波探测器组成的双鉴探测器,教之以往的微波或红外单信号探测器,其误报率明显下降,原理示意图如1� �� 双鉴探测器工作时将探测到的红外和微波两种信号经过与非门处理后送单片机,即只有同时检测到两个探测器输出端口为高电平信号时,自动报警器才会响应盗情报警信号,否则不报警。在红外探测器中,通过菲涅尔透镜的分割方式的改变可以降低由于小宠物引起的误报,从而弥补了微波探测器监视面积较大的弱点;但红外探测器对环境温度的变化比较敏感,而微波探测器所检测的只是活动的目标,所以对于如果只是温度变化引起的干扰并不会被自动报警器响应。通过这样双重的检测就进一步减小了外界干扰,降低了报警信号误报的发生率。� 2防火探测器原理� 防火探测器是由温度探测、光电感烟探测和一氧化碳传感器探测构成的复合型火灾探测器。多传感器设计思想解决了传统防火探测器一直存在的误报率高的问题,增强了火灾探测的可靠性。复合型火灾探测器原理如图2所示。在报警系统中对火灾信号的检测采用多传感器/多判据的火灾探测技术,将探测器探测到的多元火灾探测信息经单片机进行综合判断,在软件设计中加入了神经网络智能算法,防真实现了多元同步智能探测。� 3.3用户端自动报警器原理 自动报警器组成框图如图3所示,主要包括拨号模块、语音模块、电话接口模块、键盘/密码显示模块以及电源模块。� 用户端的防范现场,一旦有人入侵、或发生火灾等紧急情况时,与之相应的报警探测器(各种防火、防盗及手动报警按钮等)则立即向用户端自动报警器发出报警信号。接到警情事件后,自动报警器立即进行确认(多次巡检中断信号),若50s后无人解除警情同时警情确认无误后,进行事件的现场声(蜂鸣器)、光(LED)报警,同时用户端自动报警器自动向有关部门拨打预先设置好的报警电话号码,进行语音报警。在用户端自动报警器的面板上设有LCD显示器、键盘以及三色警灯(LED),三色警灯分别指示火灾或红外/微波双鉴的防火报警、正常工作及系统出现故障的状态,即报警灯(红)、工作灯(绿)和故障灯(黄)。正常时LCD显示时间,事件发生时锁定显示当时时间。用户端报警器同时具有探头故障报警功能,避免由于探头掉电而漏报,出现故障时点亮故障灯;如果判断探头掉线(被剪断),则声光报警。如果出现误触发而报警时可以通过触发延迟时间(50s定时器)去接触,另外用户端自动报警器还具备状态信息(如有无交流电、备用电池电量是否不足等)上报的功能,可以对预设的普通电话、手提电话实现报警。
131 评论(8)

铃兰花开灿烂

这是一篇 PHD的论文,谈论有关 无线传感网络 的,你看下,是否符合你需要,如果类型都不一致,那就没必要翻译了。Mechanisms for energy conservation in wireless sensor networksSupervisor: Maurizio BonuccelliThesis commettee: Paolo Ferraggina, Piero MaestriniExternal referees: Stefano Basagni, Mani SrivastavaNational commettee: Bugliesi, Meo, and Panzieri December 27, 2005 AbstractIn this thesis we address the problem of reducing energy consumption in wireless sensor We propose a suit of techniques andstrategies imported from other research areas that can be applied to design energy-efficient protocols in sensor They includetime series forecasting, quorums systems, and the interaction between sensor properties and protocol We apply these techniques to the time synchronization problem, to efficiently collecting data from a sensor network, and to ensuring stronger data consistency guarantees in mobile We show in [1,2,3,4] that time series forecasting techniques, and in particular autoregressive (AR) models, can be applied to sensor networks to conserve We study a simple type of time series models with a short prediction We have chosen this model because it is capableof predicting data produced by real-world sensors measuring physical phenomena, and it is computationally tractable on modern-generation sensor We apply these models to solve two relevant problems in sensor networks: the problem of efficiently collecting sensor data at the sink, and the time synchronization We propose an energy-efficient framework, called SAF Similarity--based Adaptable query Framework [1,2] ), for approximate querying and detecting outlier values in sensor The idea is to combine local AR models built at each node into a global model stored at the root of the network(the sink) that is used to approximately answer user Our approach uses dramatically fewer transmissions than previous approximate approaches by using AR models and organizing the network into clusters based on data similarity between Our definition of data similarity is based on the coefficients of the local AR models stored at the sink, which reduces energy consumption over techniques that directly compare data values, and allows us to derive an efficient clustering algorithm that is provably optimal in the number of clusters formed by the Our clusters have several interesting features that make them suitable also for mobile networks: first, they can capture similarity between nodes that are not geographically adjacent; second, cluster membership adapts at no additional cost; third, nodes within a cluster are not required to track the membership of other nodes in the Furthermore, SAF provides provably correct error bounds and allows the user to dynamically tune answer quality to answer queries in an energy and resource efficient In addition, we apply the AR models to solve the time synchronization problem from a novel perspective which is complementary to the well-studied clock synchronization problem [3,4] More precisely, we analyze the case in which a sensor node decides to skip one or more clock adjustments to save energy, or it is temporarily isolated, but still requires an accurate estimate of the We propose a provably correct clock method based on AR models, which returns a time estimate within a constant (tunable) error bound and error This method is highly adaptable and allows the sensor to decide how manyclock adjustments it can skip while maintaining the same time accuracy, thus saving In addition, we propose a suit of deterministic methods that reduce the time estimation error by at least a factor More precisely, we propose a provably correct deterministic clock reading method, called the DCR method, which exploits information regarding the sign of the clock deviation, and can be applied to reduce by half the frequency of the periodic clock adjustments, while maintaining the same error bound [3,4] This method is of both practical and theoretical In fact, it leads to a noticeable energy saving, and shows that a stronger but realistic clock model can lead to a refinement of the optimality bound for the maximum deviation of a clock that is periodically In addition, we propose a generalized version of the DCR method that enhances its accuracy depending on the clock stability, and a method that guarantees the monotonicity of the time values We analyze for the first time quorum system techniques in the context of sensor networks: we redesign them and show their benefits in terms of energy consumption [6] Quorum systems have the potential to save energy in sensor networks since they can reduce noticeably the amount of communication, improve the load balance among sensor nodes, and enhance the scalability of the However, previous quorum systems and quorum metrics, proposed for wired networks, are unsuitable for sensor networks since they do not address their properties and These observations have motivated us to redesigning quorum systems and their metrics, taking into account the limitations and characteristics of sensors (, transmission costs, limited energysource, physical radio broadcast), and the network More precisely, we redefine the following quorum metrics: load balance, access cost and quorum capacity, and devise some strategies based on some characteristics of sensor networks that reduce the amount of communication when designing quorum systems for sensor We apply these strategies to design a family of energy-efficient quorum systems with high In particular, we propose a quorum construction that reduces the quorum access cost, and propose an energy-efficient data diffusion protocol built on top of it that reduces the energy consumption by reducing the amount of transmissions and In addition, we analyze quorum systems in case of high node More precisely, we study the difficult problem of guaranteeing the intersection between two quorums in case nodes move continuously along unknown paths [7] We address this problem by defining a novel mobility model that provides a minimum set of constraints sufficient to derive strong data guarantees in highly mobile Also in this case, we show the unsuitability of previous quorum systems, and provide a condition which is necessary to guarantee data availability and atomic consistency under high node We propose a new classof quorum systems, called Mobile Dissemination (MD) quorums, suitable for highly mobile networks, and propose a quorum construction which is optimal with respect to the quorum size (, message transmissions) [7] Then, we apply the MD quorum system to implement a provably correct atomic read/write shared memory for mobile and sparse Bibliography [1] D Tulone, S M PAQ: Time series forecasting for approximate query answeringin sensor In P of the 3rd European Workshop on Wireless Sensor Networks, 21-37, Feb [2] D Tulone, S M An energy-efficient querying framework in sensor networks for detecting node Submitted to [3] D T On the feasibility of global time estimation under isolation conditions in wireless sensor To appear in A[4] D T A resource-efficient time estimation for wireless sensor In P of the 4th Workshop of Principles of Mobile Computing, 52-59, Oct [5] D T How efficiently and accurately can a process get the reference time? I S on Distributed Computing, O Brief announcement, 25-[6] DTulone, E D D Redesigning quorum systems for wireless sensor Submitted to [7] D T Is it possible to ensure strong data guarantees in highly mobile networks? Submitted to
141 评论(15)

相关问答