丑八怪77
根据数学内容的性质,数学教学一般可分为概念教学、命题(主要有定理、公式、法则、性质)教学、例题教学、习题教学、总结与复习等5类。相应地,数学学法指导的实施亦需分别落实到这5类教学之中。这里仅就例题教学中如何实施数学学法指导谈谈自己的认识。 1.根据学生的学情安排例题。如前所述,学习新知必须建立在已有的基础之上,从内容上讲,这个基础既包括知识基础,又包括认知水平和认知能力,还包括学习兴趣、认知意识,乃至学习态度等有关学习动力系统方面的准备。因此,无论是选配例题,还是安排例题,都要考虑到学生的学习情况,尤其是要考虑激发学生认知兴趣和认知需求的原则(称之为动机原则)。在例题选配和安排中,可采取增、删、调的策略,力求既突出重点,又符合学生的学情。所谓增,即根据学生的认知缺陷增补铺垫性例题,或者为突破某个难点增加过渡性例题。所谓删,即根据学生情况,删去比较简单的例题或要求过高的难题。所谓调,即根据学生的实际水平,将后面的例题调至前面先教,或者将前面的例题调到后面后教。 2.根据学习目标和任务精选例题。例题的作用是多方面的,最基本的莫过于理解知识,应用知识,巩固知识;莫过于训练数学技能,培养数学能力,发展数学观念。为发挥例题的这些基本作用,就要根据学习目标和任务选配例题。具体的策略是:增、删、并。这里的增,即为突出某个知识点、某项数学技能、某种数学能力等重点内容而增补强化性例题,或者根据联系社会发展的需要,增加补充性例题。这里的删,即指删去那些作用不大或者过时的例题。所谓并,即为突出某项内容把单元内前后的几个例题合并为一个例题,或者为突出知识间的联系打破单元界限而把不同内容的例题综合在一起。 3.根据解题的心理过程设计例题教学程序。按照波利亚的解题理论,一般把解题过程分为弄清问题、拟定计划、实现计划、回顾等4个阶段。这是针对解题过程本身而言的。但就解题教学来说,还应当增加一个步骤,也是首要环节,即要使学生“进入问题情境”,让学生产生一种认知的需要。对于“进入问题情境”环节,要求教师用简短的语言,在承上启下中,提出学习目标,明确学习任务,激起认知冲突。而对其余4个环节,教师的行为可按波利亚的“怎样解题表”中的要求去构思。一般教师和学生都能够注意做到做好前3个环节,却容易忽视“回顾”环节。 严格说来,回顾环节对解题能力的提高,对例题教学目的的实现起着不可替代的作用。对回顾环节来讲,除波利亚提出的几条以外,更为主要的是对解题方法的概括和反思,并使其能迁移到其它问题的解决之中。 4.根据数学方法指导的目的和内容适度调整例题。通常,人们根据问题的条件(A)、解决的过程(B)及问题的结论(C)的情况把数学题划分为标准题和非标准题两大类:如果条件和结论都明确,学生也熟知解题过程(即A、B、C三要素全已知),这种题为标准题(记为ABC);A、B、C三要素中缺少一个或两个要素的题则为非标准题。如果分别用X、Y、Z表示对应于A、B、C的未知成分,则非标准题的题型(计6种)可表示为:ABZ,AYC,XBC,AYZ,XBZ,XYC。数学教材中的例题大多数是ABC型和ABZ型,有部分的AYC型和极少数的AYZ型。由于数学学法指导的一项重要任务是教学生会抽象、概括、归纳、演绎,会数学地思考和交流,会分析问题和解决问题,因而例题教学要特别注重教材中缺少的几种类型题的教学。其中最为重要的是“开放性题”(ABZ型和AYZ型例题中,Z不唯一)和“数学问题解决”中所指出的“数学应用题”(AYC型及AYZ型中所涉及的主题是数学以外的内容)。对于“开放性题”,由于它的结论不唯一,对培养学生数学思维有着至关重要的作用。对于“数学应用题”,则由于它的解决要用数学模型法,因而对培养学生运用分析问题和解决问题的方法是十分重要的。从数学学法指导的角度来说,适度调整例题很有必要。调整的策略有二:一是改,即将已有的题型变换为别的题型;二是增,即增加与知识点有关的“开放性题”和“数学应用题”。 5.注重对例题的全方位反思。例题的作用是多方面的,除上文提到的几点外,例题教学还具有传授新知识,积累数学经验,完善数学认知结构 
论文摘要:本文以递归的方法解决历史上著名的德•梅齐里克砝码问题,并加以推广阐述了一种特殊的进制数方式,对此问题作出了一个普遍解:任意给定一个自然数,能够以最少的个数的项保证其和为给定数而又能遍历1到此数间的任意整数。关键词:进制数,遍历,基底,状态值;一.问题介绍一位商人有一个40磅重的砝码,由于跌落在地而碎成4块,后来称得每块碎片的重量都是整磅数,而且可以用这4块来称从1至40磅之间的任意整磅数的重物,问这4块砝码碎片各是多少。摘自《100个著名初等数学问题》二.问题解决考虑这样一个用法码称重物的问题,实际上是通过在天平两端放不同砝码使各砝码值相加减得到目的值。用递归的方法能很好的解决:设前i块碎片的总质量为,由这块能够称出1~之间所有整磅数,那么第+1块碎片则为2+1,。它依次减去前块得到的各个磅数就能得到(+1)~(2+1),它依次加上前块得到的各个磅数就能得到(2+2)~(3+1)2+1—=+12+1+=3+12+1—(—1)=+22+1+(—1)=32+1—(—2)=+32+1+(—2)=3—1………………2+1—1=22+1+1=2+22+1自己当然能够称出来;所以由这+1块碎片能称出1~(3+1)所有的整质量。设第块碎片重为,则有:=2+1;=21+1;两式相减得=3;=1,故各碎片的磅数分别为1,3,9,满足和为40的要求。