期刊问答网 论文发表 期刊发表 期刊问答
  • 回答数

    3

  • 浏览数

    133

皮皮虾走走走
首页 > 期刊问答网 > 期刊问答 > 集合论的诞生论文

3个回答 默认排序1
  • 默认排序
  • 按时间排序

海德堡

已采纳
故事名:数学集合故事内容:数学集合数学集合数学集合数学集合数学集合数学集合数学集合数学集合数学集合数学集合数学集合数学集合数学集合数学集合数学集合数学集合数学集合数学集合数学集合数学集合数学集合数学集合数学集合数学集合数学集合数学集合数学集合数学集合数学集合数学集合数学集合数学集合数学集合数学集合数学集合结果: 数学集合了。

集合论的诞生论文

312 评论(10)

nj麦子

集合论的诞生先驱 数学分析严格化的先驱波尔查诺(1781-1848)也是一位探索实无穷的先驱,他是第一个为了建立集合的明确理论而作出了积极努力的人。他明确谈到实在无穷集合的存在,强调两个集合等价的概念,也就是后来的一一对应的概念。他知道,无穷集合的一个部分或子集可以等价于其整体,他认为这个事实必须接受。例如0到5之间的实数通过公式y=12x/5可与0到12之间的实数构成一一对应,虽然后面的集合包含前面的集合。为此,他为无穷集合指定超限数,使不同的无穷集合,超限数不同。不过,后来康托尔指出,波尔查诺指定无穷集合的超限数的具体方法是错误的。另外,他还提出了一些集合的性质,并将他们视为悖论。因此,他关于无穷的研究哲学意义大于数学意义。应该说,他是康托尔集合论的先驱。问题出现 黎曼(1826-1866)是在1854年的就职论文《关于用三角级数表示函数的可能性》中首次提出“唯一性问题”的。大意是:如果函数f(x)在某个区间内除间断点外所有点上都能展开为收敛于函数值的三角级数,那么这样的三角级数是否是唯一的?但他没有给予回答。1870年海涅(1821-1881)证明:当f(x)连续,且它的三角级数展开式一致收敛时,展开式是唯一的。进一步的问题是:当f(x)具有无穷多个间断点时,唯一性能否成立?康托尔就是通过对唯一性问题的研究,认识到无穷集合的重要性,并开始从事无穷集合的一般理论研究。奠定基础 早在1870年和1871年,康托尔两次在《数学杂志》上发表论文,证明了函数f(x)的三角级数表示的唯一性定理,而且证明了即使在有限个间断点处不收敛,定理仍然成立。1872年他在《数学年鉴》上发表了一篇题为《三角级数中一个定理的推广》的论文,把海涅的一致收敛的严酷条件推广到允许间断点是某种无穷的集合的情形。为了描述这种集合,他首先定义了点集的极限点,然后引进了点集的导集和导集的导集等有关重要概念。这是从唯一性问题的探索向点集论研究的开端,并为点集论奠定了理论基础。集合论诞生 1873年11月29日康托尔在给戴德金(1831-1916)的一封信中,终于把导致集合论产生的问题明确地提了出来:正整数的集合(n)与实数的集合(x)之间能否把它们一一对应起来。同年12月7日,康托尔写信给戴德金,说他已能成功地证明实数的“集体”是不可数的,也就是不能同正整数的“集体”一一对应起来。这个时期应该看成是集合论的诞生日。集合拓扑开始 1874年,康托尔发表了这个证明,不过论文题目换成另外一个题目“论所有实代数数集体的一个性质,”因为克洛内克(1823-1891)根本就反对这种论文,他认为这种论文根本没有内容,无的放矢。该文提出了“可数集”概念,并以一一对应为准则对无穷集合进行分类,证明了如下重要结果:(1)一切代数数是可数的;(2)任何有限线段上的实数是不可数的;(3)超越数是不可数的;(4)一切无穷集并非都是可数的,无穷集同有穷集一样也有数量(基数)上的区别。 1874年1月5日,康托尔给戴德金写信,提出下面的问题: 是否能把一块曲面(如包含边界在内的正方形)一意地映射到一条线(如包含端点在内的线段),使得面上每一点对应线上一点而且反过来线上每一点对应面上一点? 1877年6月20日,他给戴德金写信,这次他告诉他的朋友这个问题答案是肯定的理由,虽然几年以来他都认为答案是否定的。信中说“我看到了它,但我简直不能相信它”。关于这一成果的论文1878年发表后,吸引人们研究度量空间维数的本质,很快出现一批论文。这批论文标志集合拓扑的开始。点集论体系建立 从1879年到1883年,康托尔写了六篇系列论文,论文总题目是“论无穷线形点流形”,其中前四篇同以前的论文类似,讨论了集合论的一些数学成果,特别是涉及集合论在分析上的一些有趣的应用。第五篇论文后来以单行本出版,单行本的书名《一般集合论基础》。第六篇论文是第五篇的补充。《一般集合论基础》在数学上的主要成果是引进超穷数。该文从内容到叙述方式都同现代的朴素集合论基本一致,所以该书标志着点集论体系的建立。遭遇挫折 1884年,由于连续统假设长期得不到证明,再加上与克罗内克的尖锐对立,精神上屡遭打击,5月底,他支持不住了,第一次精神崩溃。他的精神沮丧,不能很好地集中研究集合论,从此深深地卷入神学、哲学及文学的争论而不能自拔。不过每当他恢复常态时,他的思想总变得超乎寻常的清晰,继续他的集合论的工作。康托尔的贡献 《对超穷集合论基础的贡献》是康托尔最后一部重要的数学著作。《贡献》分两部分,第一部分是全序集合的研究,于1895年5月在《数学年刊》上发表。第二部分于1897年5月在《数学年刊》上发表。《贡献》的发表标志集合论已从点集论过渡到抽象集合论。但是,由于它还不是公理化的,而且它的某些逻辑前提和某些证明方法如不给予适当的限制便会导出悖论,所以康托尔的集合论通常成为古典集合论或朴素集合论。出现悖论导致怀疑 不过,康托尔的集合论并不是完美无缺的,一方面,康托尔对“连续统假设”和“良序性定理”始终束手无策;另一方面,19和20世纪之交发现的布拉利-福蒂悖论、康托尔悖论和罗素悖论,使人们对集合论的可靠性产生了严重的怀疑。加之集合论的出现确实冲击了传统的观念,颠倒了许多前人的想法,很难为当时的数学家所接受,遭到了许多人的反对,其中反对的最激烈的是柏林学派的代表人物之一、构造主义者克罗内克。克罗内克认为,数学的对象必须是可构造出来的,不可用有限步骤构造出来的都是可疑的,不应作为数学的对象,他反对无理数和连续函数的理论,同样严厉批评和恶毒攻击康托尔的无穷集合和超限数理论不是数学而是神秘主义。他说康托尔的集合论空空洞洞毫无内容。集合论的悖论出现之后,他们开始认为集合论根本是一种病态,他们以不同的方式发展为经验主义、半经验主义、直觉主义、构造主义等学派,在基础大战中,构成反康托尔的阵营。得到肯定 康托尔的集合论得到公开的承认和热情的称赞应该说首先在瑞士苏黎世召开的第一届国际数学家大会上表现出来。瑞士苏黎世理工大学教授胡尔维茨(1859-1919)在他的综合报告中,明确地阐述康托尔集合论对函数论的进展所起的巨大推动作用,这破天荒第一次向国际数学界显示康托尔的集合论不是可有可无的哲学,而是真正对数学发展起作用的理论工具。在分组会上,法国数学家阿达玛(1865-1963),也报告康托尔对他的工作的重要作用。 随着时间的推移,人们逐渐认识到集合论的重要性。希尔伯特高度赞誉康托尔的集合论“是数学天才最优秀的作品”,“是人类纯粹智力活动的最高成就之一”,“是这个时代所能夸耀的最巨大的工作”。在1900年第二届国际数学家大会上,希尔伯特高度评价了康托尔工作的重要性,并把康托尔的连续统假设列入20世纪初有待解决的23个重要数学问题之首。当康托尔的朴素集合论出现一系列悖论时,克洛内克的后继者布劳威尔(1881-1966)等人借此大做文章,希尔伯特用坚定的语言向他的同代人宣布:“没有任何人能将我们从康托尔所创造的伊甸园中驱赶出来”。编辑本段集合论的发展成为系统的学科 1899年第一篇点集论的论文在《德国数学家联合会年报》上发表,这篇论文是德国数学家舍恩弗利斯(1853-1928)写的。他本人在其后还为德国《数学科学百科全书》中撰写有关条目。20世纪初他继续研究康托尔留下的问题,特别是维数不变性问题。大约同时,德国数学家豪斯道夫(1868-1942)对集合论进行一系列研究,特别是序型及序集理论。1914年出版《集合论大纲》更是集合论及点集拓扑学的经典著作,他的体系是后来研究的基础及出发点。从此集合论成为系统的学科 。确立地位 从非欧几何的产生开始的对数学无矛盾性(相对无矛盾性)的证明把整个数学解释为集合论,集合论成了数学无矛盾性的基础,集合论在数学中的基础理论地位就逐步确立起来。
253 评论(14)

zengbinguyun

【一、集合论的诞生】 集合论是德国著名数学家康托尔于19世纪末创立的。十七世纪,数学中出现了一门新的分支:微积分。在之后的一二百年中这一崭新学科获得了飞速发展并结出了丰硕成果。其推进速度之快使人来不及检查和巩固它的理论基础。十九世纪初,许多迫切问题得到解决后,出现了一场重建数学基础的运动。正是在这场运动中,康托尔开始探讨了前人从未碰过的实数点集,这是集合论研究的开端。到1874年康托尔开始一般地提出“集合”的概念。他对集合所下的定义是:把若干确定的有区别的(不论是具体的或抽象的)事物合并起来,看作一个整体,就称为一个集合,其中各事物称为该集合的元素。人们把康托尔于1873年12月7日给戴德金的信中最早提出集合论思想的那一天定为集合论诞生日。【二、康托尔的不朽功绩】 前苏联数学家柯尔莫戈洛夫评价康托尔的工作时说:“康托尔的不朽功绩在于他向无穷的冒险迈进”。因而只有当我们了解了康托尔在对无穷的研究中究竟做出了些什么结论后才会真正明白他工作的价值之所在和众多反对之声之由来。数学与无穷有着不解之缘,但在研究无穷的道路上却布满了陷阱。因为这一原因,在数学发展的历程中,数学家们始终以一种怀疑的眼光看待无穷,并尽可能回避这一概念。但试图把握无限的康托尔却勇敢地踏上了这条充满陷阱的不归路。他把无穷集这一词汇引入数学,从而进入了一片未开垦的处女地,开辟出一个奇妙无比的新世界。对无穷集的研究使他打开了“无限”这一数学上的潘多拉盒子。“我们把全体自然数组成的集合简称作自然数集,用字母N来表示。”学过集合的所有人应该对这句话不会感到陌生。但在接受这句话时我们根本无法想到当年康托尔如此做时是在进行一项更新无穷观念的工作。在此以前数学家们只是把无限看作永远在延伸着的,一种变化着成长着的东西来解释。无限永远处在构造中,永远完成不了,是潜在的,而不是实在。这种关于无穷的观念在数学上被称为潜无限。十八世纪数学王子高斯就持这种观点。用他的话说,就是“……我反对将无穷量作为一个实体,这在数学中是从来不允许的。所谓无穷,只是一种说话的方式……”而当康托尔把全体自然数看作一个集合时,他是把无限的整体作为了一个构造完成了的东西,这样他就肯定了作为完成整体的无穷,这种观念在数学上称为实无限思想。由于潜无限思想在微积分的基础重建中已经获得了全面胜利,康托尔的实无限思想在当时遭到一些数学家的批评与攻击是无足为怪的。然而康托尔并未就此止步,他以完全前所未有的方式,继续正面探讨无穷。他在实无限观念基础上进一步得出一系列结论,创立了令人振奋的、意义十分深远的理论。这一理论使人们真正进入了一个难以捉摸的奇特的无限世界。最能显示出他独创性的是他对无穷集元素个数问题的研究。他提出用一一对应准则来比较无穷集元素的个数。他把元素间能建立一一对应的集合称为个数相同,用他自己的概念是等势。由于一个无穷集可以与它的真子集建立一一对应关系――也就是说无穷集可以与它的真子集等势,即具有相同的个数。这与传统观念“全体大于部分”相矛盾。而康托尔认为这恰恰是无穷集的特征。在此意义上,自然数集与正偶数集具有了相同的个数,他将其称为可数集。又可容易地证明有理数集与自然数集等势,因而有理数集也是可数集。后来当他又证明了代数数集合也是可数集时,一个很自然的想法是无穷集是清一色的,都是可数集。但出乎意料的是,他在1873年证明了实数集的势大于自然数集。这不但意味着无理数远远多于有理数,而且显然庞大的代数数与超越数相比而言也只成了沧海一粟,如同有人描述的那样:“点缀在平面上的代数数犹如夜空中的繁星;而沉沉的夜空则由超越数构成。”而当他得出这一结论时,人们所能找到的超越数尚仅有一两个而已。这是何等令人震惊的结果!然而,事情并未终结。魔盒一经打开就无法再合上,盒中所释放出的也不再限于可数集这一个无穷数的怪物。从上述结论中康托尔意识到无穷集之间存在着差别,有着不同的数量级,可分为不同的层次。他所要做的下一步工作是证明在所有的无穷集之间还存在着无穷多个层次。他取得了成功,并且根据无穷性有无穷种的学说,对各种不同的无穷大建立了一个完整的序列,他称为“超限数”。他用希伯莱字母表中第一个字母“阿列夫”来表示超限数的精灵,最终他建立了关于无限的所谓阿列夫谱系 它可以无限延长下去。就这样他创造了一种新的超限数理论,描绘出一幅无限王国的完整图景。可以想见这种至今让我们还感到有些异想天开的结论在当时会如何震动数学家们的心灵了。毫不夸张地讲,康托尔的关于无穷的这些理论,引起了反对派的不绝于耳的喧嚣。他们大叫大喊地反对他的理论。有人嘲笑集合论是一种“疾病”,有人嘲讽超限数是“雾中之雾”,称“康托尔走进了超限数的地狱”。作为对传统观念的一次大革新,由于他开创了一片全新的领域,提出又回答了前人不曾想到的问题,他的理论受到激烈地批驳是正常的。当回头看这段历史时,或许我们可以把对他的反对看作是对他真正具有独创性成果的一种褒扬吧。公理化集合论的建立 集合论提出伊始,曾遭到许多数学家的激烈反对,康托尔本人一度成为这一激烈论争的牺牲品。在猛烈的攻击下与过度的用脑思考中,他得了精神分裂症。【 三、集合论的发展】 然而集合论前后经历二十余年,最终获得了世界公认。到二十世纪初集合论已得到数学家们的赞同。数学家们为一切数学成果都可建立在集合论基础上的前景而陶醉了。他们乐观地认为从算术公理系统出发,借助集合论的概念,便可以建造起整个数学的大厦。 在1900年第二次国际数学大会上,著名数学家庞加莱就曾兴高采烈地宣布“……数学已被算术化了。今天,我们可以说绝对的严格已经达到了。”然而这种自得的情绪并没能持续多久。不久,集合论是有漏洞的消息迅速传遍了数学界。这就是1902年罗素得出的罗素悖论。 罗素构造了一个所有不属于自身(即不包含自身作为元素)的集合R。现在问R是否属于R?如果R属于R,则R满足R的定义,因此R不应属于自身,即R不属于R;另一方面,如果R不属于R,则R不满足R的定义,因此R应属于自身,即R属于R。这样,不论何种情况都存在着矛盾。 这一仅涉及集合与属于两个最基本概念的悖论如此简单明了以致根本留不下为集合论漏洞辩解的余地。绝对严密的数学陷入了自相矛盾之中。这就是数学史上的第三次数学危机。危机产生后,众多数学家投入到解决危机的工作中去。 1908年,策梅罗提出公理化集合论,后经改进形成无矛盾的集合论公理系统,简称ZF公理系统。原本直观的集合概念被建立在严格的公理基础之上,从而避免了悖论的出现。这就是集合论发展的第二个阶段:公理化集合论。 与此相对应,在1908年以前由康托尔创立的集合论被称为朴素集合论。公理化集合论是对朴素集合论的严格处理。它保留了朴素集合论的有价值的成果并消除了其可能存在的悖论,因而较圆满地解决了第三次数学危机。 公理化集合论的建立,标志着著名数学家希耳伯特所表述的一种激情的胜利,他大声疾呼:没有人能把我们从康托尔为我们创造的乐园中赶出去。从康托尔提出集合论至今,时间已经过去了一百多年,在这一段时间里,数学又发生了极其巨大的变化,包括对上述经典集合论作出进一步发展的模糊集合论的出现等等。而这一切都是与康托尔的开拓性工作分不开的。因而当现在回头去看康托尔的贡献时,我们仍然可以引用当时著名数学家对他的集合论的评价作为我们的总结。“它是对无限最深刻的洞察,它是数学天才的最优秀作品,是人类纯智力活动的最高成就之一。康托尔的无穷集合论是过去两千五百年中对数学的最令人不安的独创性贡献。”
208 评论(9)

相关问答