期刊问答网 论文发表 期刊发表 期刊问答

对数学的一些思考论文1500字

  • 回答数

    4

  • 浏览数

    169

181465
首页 > 期刊问答网 > 期刊问答 > 对数学的一些思考论文1500字

4个回答 默认排序1
  • 默认排序
  • 按时间排序

uezgqs576

已采纳
回答 用勾(a)和股(b)分别表示直角三角形得到两条直角边,用弦(c)来表示斜边,则可得:勾2+股2=弦2亦即:a2+b2=c2勾股定理在西方被称为毕达哥拉斯定理,相传是古希腊数学家兼哲学家毕达哥拉斯于公元前550年首先发现的。其实,我国古代得到人民对这一数学定理的发现和应用,远比毕达哥拉斯早得多。如果说大禹治水因年代久远而无法确切考证的话,那么周公与商高的对话则可以确定在公元前11XX年左右的西周时期,比毕达哥拉斯要早了五百多年。其中所说的勾3股4弦5,正是勾股定理的一个应用特例(32+42=52)。所以现在数学界把它称为勾股定理,应该是非常恰当的。在稍后一点的《九章算术一书》中,勾股定理得到了更加规范的一般性表达。书中的《勾股章》说;“把勾和股分别自乘,然后把它们的积加起来,再进行开方,便可以得到弦。”把这段话列成算式,即为:弦=(勾2+股2)(1/2)即:c=(a2+b2)(1/2)定理:如果直角三角形两直角边分别为a,b,斜边为c,那么a^平方+b^平方=c^平方;即直角三角形两直角边的平方和等于斜边的平方。如果三角形的三条边a,b,c满足a^2+b^2=c^2,如:一条直角边是3,一条直角边是四,斜边就是3*3+4*4=,x=5。那么这个三角形是直角三角形。(称勾股定理的逆定理) 提问 一个小正方体的棱是三厘米现在有20个小正方体这样的小正方体把它搭成一个大的长方体这个长方体的表面积是多少? 答案是什么? 回答 3×2+(20×3)×3×4=6+720=726 提问 能讲一下意思? 为什么这样做? 回答 3×3×2上下底正方形面积 20×3×3侧边面积 720+18=738 提问 谢谢老师! 再见 再见 更多10条 

对数学的一些思考论文1500字

156 评论(12)

江湖狂生

还有呢,由这道题你想到的?这道题会有几种变型?
182 评论(8)

370求调剂

学习数学有感 1500字论文 学生篇
242 评论(10)

lordkings

从历史的角度看,每一个重要的时期,经济、产业或者社会发生根本性变化的时候,数学常常在其中起了十分重要甚至是先导的作用。例如17世纪欧洲文艺复兴时期,产业革命和数学的发展是密切结合在一起的。 17世纪下半叶,在前人工作的基础上,英国著名科学家牛顿和德国数学家莱布尼茨分别在自己的国度里独自完成了微积分的创立研究工作。“有人说当时的产业革命源于瓦特发明了蒸汽机,但在那一时期,牛顿和莱布尼茨创建和使用微积分,使得人们可以能够更好地处理实际问题。因为,过去的初等数学只能处理常量问题,比如三角形和长方形的面积可以计算,但是曲线形就不行了。数学起源于数,数起源于数数。在远古时代,人们都用一点、一竖或者一横来记录一,用两点、两竖或者两横来记录二,这样的记录特征孕育了加法。但是当考察到五的时候,人类就未必采用五点、五竖或者五横了。一旦到了十,几乎就没有再用十点、十竖或者十横来表示了。表示五和十的记号的产生是一种飞跃。由形象到抽象是一种质的变化,而且这种抽象导致了加法规律。因此抽象是数学与生俱来的特征,导致了它的深邃和睿智。 著名数学家华罗庚曾经说过:宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,日用之繁,无处不用数学。这是对数学与生活的精彩描述。数学与社会生活相互依存,相互融合。数学问题来源于生活,而生活问题又可用数学知识来解决。可以这么说,数学就在我们身边,举目望去,到处都是数、形、大小、长短、位置、分类、加减等数学信息。比如说,上街买东西要用到加减法乘除法来计算应该付多少钱和找零是多少,另外统计上街花费的时间、所走的路程、购买东西的种类和重量都需要用数学语言来记录。由此可见,日常生活中经常会用到数学知识,而这些数学知识也给我们带来了不少帮助。学习了长方形、正方形面积的计算及组合图形的计算后,可以运用所学知识解决生活中的实际问题。比如通过测量长和宽来算一算一间住房的面积有多大?在学习了圆柱体的体积计算后,可以通过测量底面直径和高计算水杯的容积是多少?再比如三角形,我们的门是长方形,时间久了它就会变成平行四边形。这样的话,开门关门就会压到地面,关门非常不好关。这个时候我们就可以用到三角形的性质了,三角形具有稳定性,在生活中可以起到固定的作用。所以我们可以在门上以斜线的方式给门订上一根长条,让门变成两个三角形组合的四边形。这样的话,门具有了稳定性,就不会变成平行四边形了。因此门就不会斜下来了,自然也不会出现不好关门的现象了。如今,数学知识和数学思想在工农业生产和人们日常生活中有极其广泛的应用。譬如,人们购物后须记账,以便年终统计查询;去银行办理储蓄业务;查收各住户水电费用等,这些便利用了算术及统计学知识。此外,社区和机关大院门口的“推拉式自动伸缩门”;运动场跑道直道与弯道的平滑连接;底部不能靠近的建筑物高度的计算;隧道双向作业起点的确定;折扇的设计以及黄金分割等,则是平面几何中直线图形的性质及解直角三角形有关知识的应用。类似这样的问题数不胜数,这些知识就从生活中产生,最后被人们归纳成数学知识,解决了更多的实际问题。
277 评论(14)

相关问答