lk414
第一步:数据准备:(70%时间)· 获取数据(爬虫,数据仓库)· 验证数据· 数据清理(缺失值、孤立点、垃圾信息、规范化、重复记录、特殊值、合并数据集)· 使用python进行文件读取csv或者txt便于操作数据文件(I/O和文件串的处理,逗号分隔)· 抽样(大数据时。关键是随机)· 存储和归档第二步:数据观察(发现规律和隐藏的关联)· 单一变量:点图、抖动图;直方图、核密度估计;累计分布函数· 两个变量:散点图、LOESS平滑、残差分析、对数图、倾斜· 多个变量:假色图、马赛克图、平行左边图第三步:数据建模· 推算和估算(均衡可行性和成本消耗)· 缩放参数模型(缩放维度优化问题)· 建立概率模型(二项、高斯、幂律、几何、泊松分布与已知模型对比)第四步:数据挖掘· 选择合适的机器学习算法(蒙特卡洛模拟,相似度计算,主成分分析)· 大数据考虑用Map/Reduce· 得出结论,绘制最后图表循环到第二步到第四步,进行数据分析,根据图表得出结论完成文章。结合实际业务来做数据分析 “无尺度网络模型”的作者艾伯特-拉斯洛·巴拉巴西认为——人类93%的行为是可以预测的。数据作为人类活动的痕迹,就像金矿等待发掘。但是首先你得明确自己的业务需求,数据才可能为你所用。数据为王,业务是核心· 了解整个产业链的结构· 制定好业务的发展规划· 衡量的核心指标有哪些 有了数据必须和业务结合才有效果。首先你需要摸清楚所在产业链的整个结构,对行业的上游和下游的经营情况有大致的了解。然后根据业务当前的需要,指定发展计划,从而归类出需要整理的数据。最后一步详细的列出数据核心指标(KPI),并且对几个核心指标进行更细致的拆解,当然具体结合你的业务属性来处理,找出那些对指标影响幅度较大的影响因子。前期资料的收集以及业务现况的全面掌握非常关键。思考指标现状,发现多维规律· 熟悉产品框架,全面定义每个指标的运营现状· 对比同行业指标,挖掘隐藏的提升空间· 拆解关键指标,合理设置运营方法来观察效果· 争对核心用户,单独进行产品用研与需求挖掘 发现规律不一定需要很高深的编程方法,或者复杂的统计公式,更重要的是培养一种感觉和意识。不能用你的感觉去揣测用户的感觉,因为每个人的教育背景、生活环境都不一样。很多数据元素之间的关系没有明显的显示,需要使用直觉与观察(数据可视化技术来呈现)。规律验证,经验总结 发现了规律之后不能立刻上线,需要在测试机上对模型进行验证。sc-cpda 数据分析公众交流平台。 
第02期1+X电子商务数据分析师(初级)视频课程,这节课我们继续学习数据分析岗位发展,觉得对资格证考试有帮助的话,帮忙点赞和转发一下,关注并私信我,发送文字“初级课程”就能获取全部视频课程资料,下期再见。
你还是自己多去看看汉斯出版社官网上的文献吧,多看看你就不会不知道怎么写了
论文常用数据分析方法 论文常用数据分析方法,对好的论文分析研究方法应该从哪些方面展开,如何表达才能显得自己对该论文真的有所理解,应该看哪些书呢?下面我整理了论文常用数据分析方法,一起了解看看吧! 论文常用数据分析方法1 论文常用数据分析方法分类总结 1、 基本描述统计 频数分析是用于分析定类数据的选择频数和百分比分布。 描述分析用于描述定量数据的集中趋势、波动程度和分布形状。如要计算数据的平均值、中位数等,可使用描述分析。 分类汇总用于交叉研究,展示两个或更多变量的交叉信息,可将不同组别下的`数据进行汇总统计。 2、 信度分析 信度分析的方法主要有以下三种:Cronbach α信度系数法、折半信度法、重测信度法。 Cronbach α信度系数法为最常使用的方法,即通过Cronbach α信度系数测量测验或量表的信度是否达标。 折半信度是将所有量表题项分为两半,计算两部分各自的信度以及相关系数,进而估计整个量表的信度的测量方法。可在信度分析中选择使用折半系数或是Cronbach α系数。 重测信度是指同一批样本,在不同时间点做了两次相同的问题,然后计算两次回答的相关系数,通过相关系数去研究信度水平。 3、 效度分析 效度有很多种,可分为四种类型:内容效度、结构效度、区分效度、聚合效度。具体区别如下表所示: 论文常用数据分析方法2 4、 差异关系研究 T检验可分析X为定类数据,Y为定量数据之间的关系情况,针对T检验,X只能为2个类别。 当组别多于2组,且数据类型为X为定类数据,Y为定量数据,可使用方差分析。 如果要分析定类数据和定类数据之间的关系情况,可使用交叉卡方分析。 如果研究定类数据与定量数据关系情况,且数据不正态或者方差不齐时,可使用非参数检验。 5、 影响关系研究 相关分析用于研究定量数据之间的关系情况,可以分析包括是否有关系,以及关系紧密程度等。分析时可以不区分XY,但分析数据均要为定量数据。 回归分析通常指的是线性回归分析,一般可在相关分析后进行,用于研究影响关系情况,其中X通常为定量数据(也可以是定类数据,需要设置成哑变量),Y一定为定量数据。 回归分析通常分析Y只有一个,如果想研究多个自变量与多个因变量的影响关系情况,可选择路径分析。