vexnum;k++) cout<vexnum;i++) cout<<" "<vexs[i]<<" "; cout<vexnum;i++) { cout<vexs[i]<<" "; for(int j=0;jvexnum;j++) { cout<节点30,大约需要8分钟,也就是说犯罪嫌疑人在3分钟之后已经离开A区,进入C区,所以此时我们应该考虑C区巡警台的围捕问题。经计算可以得出,出动173,174 号平台的警力封锁216,299号节点即可。情况二:犯罪嫌疑人还在A区,可供他选择也就是两个方向,第一小方面是往左边逃跑(如情况二图一),也就只有三种可能出项的情况,通过计算可以得出,巡警台15封锁28号路口,10平台封锁26路口,14平台封锁14路口即可。另一方面是往右边逃跑(如情况二图二),通过计算得出,2,3,4号巡警台往最近的路口处进行封堵就可以达到围捕成功。 (图P) 七.优化结果分析及误差分析: 误差主要体现在距离计算上面,某些站点之间距离不方便计算。为了计算方便,也设定路径是单向的。还有每个巡警台的工作效率和警力是不一致,不是恒定的。假设模型为了实现方便,假定逃犯的速度与警力的速度是一致的,但从实际看,逃犯速度不是恒定不变的而一个完善合理的计划,还应包含一个着眼与长期的计划,由于时间限制,我们也没有深入研究这个问题,但可以作为今后努力的方向。巡警台发生故障的考虑:在实际操作中,巡警台工作发生故障是一个很大的影响因素,我们应该进一步考虑在调度系统中如何反映与处理故障,以及对路线安排有何影响。 八.模型的评价上文从巡警台的选址,路线的效率最大化以及巡警台中警员的调度,花费最小化这些方面进行了分析,建立了一个多目标的非线性的数学模型。成功地通过实验和数据分析得出较为准确和可行性高的结果。九、参考文献: 十、附录: