期刊问答网 论文发表 期刊发表 期刊问答
  • 回答数

    3

  • 浏览数

    138

生物碱爸爸
首页 > 期刊问答网 > 期刊问答 > 高一数学函数论文1000字怎么写

3个回答 默认排序1
  • 默认排序
  • 按时间排序

zhaoman___

已采纳
数学家庭中的一对孪生兄弟 ――浅谈轴对称图形的应用数学的世界真可谓是浩瀚无比。由点到线,由线到面,由面到体。无不蕴藏着丰富的知识。我记得曾经有一句著名的格言:数学比科学大得多,因为它是科学的语言。可想而知,数学的伟大与魅力了吧!然而,在数学的大家庭中。有一对兄弟深深的吸引了我,他们的形状,他们的关系,他们的普遍性,让人觉得他们一直在我们的身边,离我们很近很近。他们就是轴对称图形。轴对称图形是一个一定要沿着某直线折叠后,直线两旁的部分互相重合的图形,之所以说到他们的关系是因为他们两个总是被一条直线所连着,好似一对分不开的兄弟,关系十分的密切。把他们拉在一起的这条直线就是他们的对称轴。当然这条对称轴就像一个公正的法官。左右两边的长度、面积、大小等,都一点儿也不差,唯一不同的就是他们所朝的方向。在数学的课本上,我们看见过他们的身影,我们也接触和了解过他们。但是他们给我印象更多的,却是他们在日常生活中所扮演、组成的图形或者可以说是事物。一、生活当中的轴对称图形 1、自然界中的轴对称图形当我漫步在街头时,我时常看见飞来飞去的蝴蝶。当一只蝴蝶停留在花朵上,张合着翅膀时,我发现如果将蝴蝶两只触角的中点与尾部相连接,连接好的线段所在的那一条直线就是其对称轴。而右边的翅膀就像是左边的翅膀沿着对称轴翻过去的图形。跟蝴蝶一样是轴对称图形的动物还有很多。比如蜻蜓、飞蛾等。如果到了秋天,远看稻田,金黄的一片,不禁使人感觉到又是一个丰收的季节。就在这个令人喜悦的季节里,我行走在田边的小路上,随手捡起了一片金黄的树叶,仔细的观察了一下,发现其实树叶也有对称轴。如果我们将树叶中间的那根经,当成是其左右两边的对称轴,那将树叶右边部分沿着这条对称轴对折过去,正好与左边的一半树叶重合。 2、商标中的轴对称图形有一次,我跟我的家人去中国银行取钱,我无意间发现中国银行的标志也是一个轴对称图形。这个图形的对称轴有两条。第一条是图标中两竖相连接所形成的,而另一条就是方框上下两条横线连接的线段的中点,所在的那一条直线就是其第二条对称轴。和中国银行一样的还有中国联通、中国农业银行以及奔驰汽车等轴对称图形。但是如果大家觉得前面几个例子,平时都没有注意到的话,那么下面说到的这个例子大家肯定熟悉的不得了。这个例子就是商标,我先来举一个吧。平时我最大的兴趣就是吃零食。所以我对“旺旺”这个商标熟悉的不得了。我发现在旺旺这个商标当中,将其头发上的一个中点到两脚脚后跟之间的线段的中点,想连接的线段所在的那一条直线就是其对称轴。也正是这条对称轴将旺旺这个图标分成了相等的两份。像旺旺这样具有对称轴的商标还有很多。比如:五粮液的商标、麦当劳的商标、CONVERSE(匡威)的商标等等。而且这些图形都是我们日常生活中常见的,这也不告诉了我们,只要我们认真、仔细的观察生活,数学的无处不在吗。二、建筑当中的轴对称图形说了生活中较为普通也较常见的轴对称图形后,也应该说说在建筑方面关于轴对称的宏伟建筑了。像我们中国的天安门城楼。如果用线段连接天安门城楼的左右两边,这条线段的中点所在的直线就是对称轴了,这条对称轴不就把天安门城楼分成了相同的两份了吗?法国的埃菲尔铁塔,是法国标志性建筑之一。它的对称轴就是把铁塔底部的两边相连接。连接后的线段的中点与塔尖的点相连接的线段所在那一条直线了。还有一些建筑也利用了轴对称的方法,他们在建筑的前方建了一个很大的水池,使建筑倒映在水中,从而形成了轴对称的效果,也增大了空间,使原本的建筑更美观,更加壮观。像泰姬陵,它不就是建筑与轴对称图形相结合的最好例子吗。在地球的另一边,有一座建筑物深深地影响着整个世界的历史,这座建筑物就是白宫。这是一座位于美国华盛顿的著名行政大楼。白宫著名的背后,轴对称起了极其重要的作用。白宫它的对称轴就是顶部的点与底部左右两边线段的中点,相连接的线段所在的那一条直线。对了,还有我们每个人家里都会有门,一些建筑师为了使门显得更加大气,更加庄重。就把门进行设计,使门的左右两边相同,古代衙门的大门和一些官府府邸的大门也设计成了轴对称的形式。使大门显得更加有气势,愈发显的威严。从中我们也不难发现,只要懂得轴对称图形,善于利用轴对称图形,就能使轴对称图形溶入到方方面面。三、文学当中的轴对称图形 1、文字中的轴对称图形每个人都知道,我们中华民族有着5000年的悠久文化。这么多年的文化所沉淀下来的瑰宝可谓是数不胜数。剪纸是我们民族十分古老的民间艺术之一。就是在这艺术品当中也不乏有轴对称的应用。让我来举个例子吧。我还记得以前我奶奶教我剪繁体的“喜”字时,首先是将红纸对折一下,之后用剪刀在纸上挥舞了一会。打开刚刚对折的纸时,出现了一个“喜”字,当时我看了之后,心里那个高兴啊,惊奇啊,但是就是不知道为什么会这样。现在长大了,我也知道了其实在剪“喜”字的过程当中,也运用了轴对称。还有许多剪纸作品,也正是因为有了轴对称的存在,使其更加精致、美观。当然我们现在所写的简体字中,也有轴对称。如“丰”“目”“尖”等。文字的对称轴较为好找,横一横,竖一竖,基本上就能够找到。其实有时候,对称轴也具有复制的功能,它能够把一个字,分成与其相同的两个字,像“二”如果把它的对称轴当作是第一横的中点和第二横的中点,所连接成的线段所在的直线的话。那么左右两边的图案,不是可以近似的看成两个二吗?此时轴对称就具有复制的功能,但是在我的眼里它还具有另一个功能。就拿这个“一”来说吧。与前面相同,也是画竖下来的对称轴。画好之后,要把这条对称轴当成这个字原有的,那么你就会发现。“一”与这条对称轴就组成了一个“十”字。这就是在我眼里轴对称图形的第二个功能。能够使一个字变成另外一个字。 2、文学中的轴对称图形刚刚说的都是文字当中轴对称的应用。那由字所组成的句子呢?其实仔细推敲一下,也有。我记得我以前与同学们都在玩一个游戏,就是一个人说出一句话,另一个人马上就得把这个句子反着读出来。在整个游戏过程当中,有一句话给我留下了深刻的印象“上海自来水来自海上”当我们把这个句子反着读一便时,就会发现它与正着读的语序一模一样。再仔细看一看,这又是一个关于轴对称的应用。这么来说吧,如果我们把“上海自来水来自海上”中的水字不看,那么两个“来”字的中点所在的那一条直线,就可以把这句话分成相等的两等份,这不就证明了句子当中也有轴对称的应用吗?这一系列的例子,也让我们看出了轴对称在文学方面所做出的成就,它能使一些作品更加完美,有画龙点睛的作用。也能使文字变化起来,使句子顺口起来。给文字与句子带来更多的趣味,也给文学添上了十分美丽的一笔。四、奥运当中的轴对称图形 2008年北京奥运会即将来临。在这个令全中国人都兴奋起来,令全世界人都以不同形式参与进来的盛会中。我们也不难发现轴对称图形——奥运五环旗。我们可以把奥运五环旗(如图一),黄、绿两环相接触的地方点A与黑环上的点B相连接,此时对称轴就是线段A、B所在的那一条直线。在奥运会上有奥运五环旗当然也会有奥运吉祥物,2008年北京奥运会的吉祥物是奥运福娃。仔细看看我们的奥运福娃不禁让人喜欢的不得了。尤其是福娃晶晶更是惹人喜爱。他的憨厚,他的朴实,无不给人亲近的感觉。图二就是福娃晶晶在举重的画面。如果大家看一下图二这张图片,就会发现如果把这张图片中的点A与下端的点B相连接。那么这条线段所在的那一条直线就是福娃晶晶的对称轴。想不到吧,原来奥运福娃也是轴对称图形。还有在奥运会上,当各国的国旗徐徐上升时,又引发了我对轴对称图形的联想。像英国的国旗,它的对称轴就是国旗上下两边线段的中点,所连成的线段所在的那一条直线。像这样的国旗还有很多。如加拿大国旗、意大利国旗等等。轴对称图形的千变万化,使我眼花缭乱,头晕目眩。在它每一次变化中,都可以发现许多的惊喜。轴对称变化它也无处不在,它存在于各个角落,这也给我们研究它带来了很多的便利。在研究轴对称图形的过程中,我懂得了只有我们用心观察,才能发现数学。只有我们认识数学,在生活中善于利用数学,我们才能将数学溶入到方方面面。而且只有我们将数学溶入到方方面面,我们才能更加好的去研究数学。其实数学的世界真的好大好大。此时我真想将自己变成大山伫立在数学当中。变成流水穿梭与数学之中,化为白云漂浮在数学之中,成为鸟儿翱翔与数学之中。真诚的希望大家用发现美的眼睛,去发现数学!感受数学!

高一数学函数论文1000字怎么写

178 评论(14)

496489653

一、函数内容处理方式的分析在整个中学阶段,函数的学习始于义务教育阶段,而系统的学习则集中在高中的起始年级。与以往相比,课程标准关于函数内容的要求发生了比较大的变化。 1. 强调函数背景及对其本质的理解无论是引入函数概念,还是学习三类函数模型,课程标准都要求充分展现函数的背景,从具体实例进入知识的学习。以往教材中,将函数作为一种特殊的映射,学生对于函数概念的理解建立在对映射概念理解的基础上。学生既要面对同时出现的几个抽象概念:对应、映射、函数,还要理清它们之间的关系。实践表明,在高中学生的认知发展水平上,理解这些抽象概念及其相互之间的关系存在很大困难。而从函数的现实背景实例出发,加强概念的概括过程,更有利于学生建立函数概念。一方面,丰富的实例既是概念的背景又是理解抽象概念的具体例证;另一方面,在实例营造的问题情境下,学生能充分经历抽象概括的过程,理解概念内涵。2.加强函数思想方法的应用函数是刻画现实世界变化规律的重要数学模型。因此,函数在现实世界中有着广泛的应用。加强函数的应用,既突出函数模型的思想,又提供了更多的应用载体,使抽象的函数概念有更多的具体内容支撑。比如,新增加的内容“不同函数模型的增长”和“二分法”,前者通过比较函数模型的增长差异,使学生能够更深刻地把握不同函数模型的特点,在面对简单实际问题时,能根据它们的特点选择或建立恰当的函数模型反映实际问题中变量间的依赖关系;后者充分体现了函数与方程之间的联系,它是运用函数观点解决方程近似解问题的方法之一,通过二分法的学习,能使学生加深对函数概念本质的理解,学会用函数的观点看待和解决问题,逐渐形成在不同知识间建立联系的意识。二、函数内容编写的基本想法函数的内容包括:函数概念及其性质,基本初等函数(Ⅰ),函数与方程,函数模型及其应用。以理解函数概念本质为线索,既可以将这些内容有机地组织为一个整体,又可以让学生以它们为载体,逐步深入地理解函数概念1.内容组织的线索:函数概念本质的理解函数概念并非直接给出,而是从背景实例出发采用归纳式的教材组织形式引入。由于函数概念的高度抽象性,学生真正理解函数概念需要一个漫长的过程,需要在不同层次上、从不同角度给学生提供理解和巩固函数概念的机会。首先,在分析典型实例的共同特征的基础上概括出函数定义后,通过讨论函数的表示、基本性质初步理解函数。它们分别是从函数的表现形式和变化规律两个方面丰富对函数概念的认识。然后,以三类基本初等函数为载体巩固函数概念,在学习了函数定义、基本性质之后,从一般概念的讨论进入到具体函数的学习。指数函数、对数函数和幂函数的概念及其性质都是一般函数概念及性质的具体化。以一类具体函数为载体,在一般函数概念的指导下对其性质进行研究,体现了“具体──抽象──具体”的过程,是函数概念理解的深化。最后,从应用的角度再一次巩固并提升对函数的理解。对一个概念真正理解的一个判断标准就是看看是否可以运用概念解决问题。教材最后安排函数的应用,包括二分法、不同函数模型的增长差异以及建立函数模型解决实际问题,就是期望学生能在“用”的过程中提高对函数概念的理解。2.突破难点的主要方法:显化过程,加强联系函数概念的理解贯穿了函数内容学习的始终,同时它也是教与学的一个难点,在教材编写中应采用什么方法突破这个难点,帮助学生更好地理解函数概念?对于形成函数这样抽象的概念,应该让学生充分经历概括的过程。概括就是把对象或关系的某些共同属性区分和固定下来。这就要求我们在编写教材时充分展示概括过程,并要充分调动学生的理性思维,引导他们积极主动地观察、分析和概括。教材选择了三个有一定代表性的实例,先运用集合与对应的语言详细地分析前两个实例中变量间的依赖关系,给学生以如何分析函数关系的示范,然后要求学生仿照着自己给出第三个实例的分析,最后通过“思考”提出问题,引导学生概括三个实例的共同属性,建立函数的概念。在这样一个从具体(背景实例)到抽象(函数定义)的过程中,学生通过自己的思考从分析单个实例上升到概括一类实例具有的共同特征,更能理解概念内涵。作为中学数学的核心概念,函数与中学数学的许多概念都有内在联系,这种联系性为理解函数概念提供了众多的角度和机会,因此加强函数与其他数学知识的联系是函数概念教学的内在要求。例如,函数有多种表示方法,加强不同表示法之间的联系和转换,使学生学会在面临一个具体问题时能根据问题的特点灵活选择表示的方法,就是促进理解的一个手段。教材通过例题给出高一某班三位同学在六次测试中的成绩及相应的班平均分的数据,要求分析三位同学的学习情况。解决这个问题的关键就是根据函数的表格表示法与图象表示法的特点,将表格表示转化为图象表示。又如,函数与现实生活有着密切的联系,所以在编写教材时注重加强函数与现实生活的联系,像由背景实例引入概念,在例题和习题中安排一定量的应用问题(碳14的衰减,地震震级,溶液的酸度等)都体现了函数与实际生活的外部联系。再如,从运用函数观点解决方程问题的角度介绍二分法,体现出函数与方程间的联系等等。三、函数内容编写中的几个关键问题1.实例如何选择无论是加强概念背景,还是突出知识的联系与应用,能达到很好效果的重要因素就是要选择合适的实例。那么,如何选择实例才能有助于学生的学习呢?对于起到不同作用的背景实例和应用实例,标准并不完全相同。但总的来说,一是实例的背景知识应该尽量简单,这样可以避免因背景的复杂性而影响对数学知识本身的理解;二是实例应丰富,这样有利于全面、准确地理解知识,不会产生偏差;三是实例应贴近学生生活、具有一定的时代性,这样才会引起学生的共鸣,激发学习的兴趣。比如,介绍函数概念时,教材选择了用解析式表示炮弹飞行的问题、用图象表示南极臭氧空洞的问题、用表格表示恩格尔系数的问题,第一个问题是学生在物理中就很熟悉的,后两个问题是日常生活中经常提及的,背景相对来说比较简单,学生就不会因为需要了解过多的背景知识而冲淡对函数概念的学习。而且重要的是,这样的三个问题包括了不同的函数表现形式,利用它们概括函数概念,就可以消除初中学习中可能存在的一些认识偏差,使学生认识到无论表示形式如何,只要对于每一个x,都有一个y与之对应,就是函数,而这正是函数的本质特征。再如,根据汽车票价制定规则写出票价和里程间的解析式,并利用解析式为售票员制作出我们在汽车上经常看到的“阶梯形票价表”这类问题,贴近学生生活并具有现实的应用价值,能引发学生的兴趣和学习的积极性。2.概念如何展开对于突破函数概念这个难点,可以在整段函数内容的学习中采用显化过程、加强联系的方法。那么具体地,在从三个方向巩固函数概念理解时,如何展开像函数的单调性、二分法这些概念,才能让学生掌握它们,从而达到巩固理解函数概念的目的呢?函数的性质就是研究函数的变化规律,这种规律最直观的获得来自于图象,图象的上升、下降就是单调性。问题在于如何帮助学生从几何直观上升到严格的数学定义。同样地,二分法也需要经历一个由直观认识到数学定义的过程。为此,就需要将直观到严格数学定义的过程划分成几个层次,为学生搭建认识的台阶,使他们逐步地获得概念。比如,介绍函数单调性时,首先给出一次函数和二次函数的图象,观察它们的图象特征,即上升或下降;然后用问题“如何描述函数图象的‘上升’‘下降’呢”引导学生用自然语言描述出图象特征;最后思考“如何利用解析式f(x)=x2描述‘随着x的增大,相应的f(x)随着减小’……”,将自然语言的描述转化成数学符号语言的描述,并一般化得到单调性的数学定义。通过这样的三步,利用数形结合的方法展开单调性的概念,既有助于学生通过自己的努力获得概念,而且也从数和形两个方面理解了概念。3.函数内容中使用信息技术的点及方式在数学课程中使用信息技术已经毋庸置疑,同样地,信息技术的使用也是教材编写中最为关注的问题之一。那么,在函数中有哪些适合使用信息技术的内容,如何使用,以及在教材中使用的方式是怎样的?信息技术具有强大的图象功能、数据处理功能和良好的交互环境,利用这些优势,在函数这部分内容中可以使用信息技术的点主要有:求函数值、做函数图象、研究函数性质、拟和函数等。运用常见的一些软件,如excel、几何画板等就可以轻松地作出函数图象,这在讨论不同函数模型增长差异时发挥很大作用,从几幅图就能直观发现增长的差异;运用计算器可以解决二分法中计算量大的问题,从而将更多精力关注到二分法的思想上,认识到函数和方程间的联系;而计算机的交互环境则为学生的自主探究提供了强有力的平台,丰富了学习方式,如讨论指数、对数函数性质时,可以充分演示出图象的动态变化过程,这样就能在变化中寻求“不变性”,发现函数具有的性质。教材编写时一方面在适合使用信息技术的地方给予提示,如“可以用计算机……”等;另一方面通过拓展栏目详细地介绍一些信息技术应用的专题,如“用计算机绘制函数图象”重点介绍使用常用软件做函数图象的方法,“借助信息技术探究指数函数的性质”给出探究的情境,要求学生亲自利用信息技术发现规律,“收集数据并建立函数模型”介绍了如何用信息技术拟合函数,等等。通过这些方式,可以为教师和学生提供使用信息技术的机会和空间。
332 评论(13)

epigenetics

不知道你需要哪一篇,你自己能上这个期刊网吗? 序号 篇名 作者 刊名 年/期 1 数列应用题的建模 尚鸿宾 数理化解题研究(高中版) 2008/08 2 等差数列应用3例 牛爱玲 数理天地(高中版) 2008/12 3 三类典型数列应用题的解题策略 慕泽刚 数学爱好者(高一人教大纲) 2008/10 4 数列的应用 王思俭 考试(高考数学版) 2008/Z5 5 丰富多彩的图形数列应用题 赵艺川 高中数学教与学 2008/07 6 高考中常见数列应用问题模型例举 邓红旗 数理化学习 2008/04 7 利用列表法求解数列应用题 宗平芬 高中数学教与学 2008/02 8 新情境下的递推数列应用问题 胡志红 高考(数语英) 2007/11 9 再说斐波那契数列的应用 邹常志 中学生数学 2007/20 10 三类典型数列应用题的解题策略 慕泽刚 数学爱好者(高一版) 2007/11 11 例说函数和数列应用题的数学化 廖东明 数学爱好者(高考版) 2007/04 12 构建数学模型解数列应用性问题 陈路飞 数学爱好者(高考版) 2006/02 13 数列应用题中的递推关系常见类型解析 黄爱民 中学数学月刊 2005/09 14 考点11 递推数列及数列的应用 中学数学 2005/Z1 15 等比数列应用题错解二例 李钟春 中学数学杂志 2005/07 16 建立递推关系 速解数列应用题例析 张照平 数理化学习(高中版) 2005/13 17 数列应用题中的几种常见递推关系 管春鸾 高中数学教与学 2005/07 18 数列应用题 李玉群 中学生数理化(高中版) 2005/04 19 数列应用问题例谈 李坤 第二课堂(高中版) 2005/05 20 新理念 新设计——谈等比数列的应用案例的设计和实践 林风 中学数学月刊 2005/01
234 评论(10)

相关问答