期刊问答网 论文发表 期刊发表 期刊问答

数学小论文初一一元一次方程

  • 回答数

    5

  • 浏览数

    232

guyue_692
首页 > 期刊问答网 > 期刊问答 > 数学小论文初一一元一次方程

5个回答 默认排序1
  • 默认排序
  • 按时间排序

sgx

已采纳
一次函数只是自变量与因变量成线性比,在平面坐标系下的图像一般是一条直线一元一次方程是一个等式,即自变量或因变量等于0的情形一般其解为(平面坐标系下的)直线与x,y轴的交点一元一次不等式,自变量与因变量之间是以不等号连接的其解一般是一个面域(即在平面坐标系下,其解一般是图像为直线的上半部分或者是其下半部分)

数学小论文初一一元一次方程

132 评论(12)

勤奋的小花痴

只含有一个未知数,即“元”,并且含有未知数的式子都是整式,是整式方程(即分子中含未知数的不是一元一次方程)。未知数的次数是1,这样的方程叫做一元一次方程,一元一次方程的标准形式(即所有一元一次方程经化简都能化成的形式)是ax+b=0(a,b为常数,x为未知数,且a≠0)。一元一次方程(英文名:linear equation with one unknown)一元一次方程所具备的条件:等号两边必须是整式,必须只有一个字母,而且字母的指数必须是列如:2a=4a-6 通过化简,只含有一个未知数,且含有未知数的最高次项的次数是一的等式,叫一元一次方程。通常形式是ax+b=0(其中x是未知数,a,b为常数,且a≠0)。一元一次方程属于整式方程,即方程两边都是整式。一元指方程仅含有一个未知数,一次指未知数的次数为1,且未知数的系数不为0(未知数常设为x、y、z)。我们将ax+b=0(其中x是未知数,a、b是已知数,并且a≠0)叫一元一次方程的标准形式。这里a是未知数的系数,b是常数,x的次数必须是1。即一元一次方程必须同时满足4个条件:⑴它是等式;⑵分母中不含有未知数;⑶未知数最高次项为1; ⑷含未知数的项的系数不为0。解方程的通常步骤:去分母→去括号→移项→合并同类项→系数化为一。“方程”一词来源于中国古算术书《九章算术》。在这本著作中,已经会列一元一次方程。法国数学家笛卡尔把未知数和常数通过代数运算所组成的方程称为代数方程。在19世纪以前,方程一直是代数的核心内容。合并同类项⒈依据:乘法分配律⒉把未知数相同且其次数也相同的项合并成一项;常数计算后合并成一项 ⒊合并时次数不变,只是系数相加减。移项⒈依据:等式的性质一⒉含有未知数的项变号后都移到方程左边,把不含未知数的项移到右边。 ⒊把方程一边某项移到另一边时,一定要变号{例如:移项时将+改为-,×改为÷}。性质等式的性质一:等式两边同时加一个数或减去同一个数或同一个整式,等式仍然成立。等式的性质二:等式两边同时扩大或缩小相同的倍数(0除外),等式仍然成立。等式的性质三:等式两边同时乘方(或开方),等式仍然成立。解方程都是依据等式的这三个性质等式的性质一:等式两边同时加一个数或减同一个数,等式仍然成立编辑本段解法步骤使方程左右两边相等的未知数的值叫做方程的解。一般解法:⒈去分母:在方程两边都乘以各分母的最小公倍数(不含分母的项也要乘);依据:等式的性质2 ⒉去括号:一般先去小括号,再去中括号,最后去大括号,可根据乘法分配律(记住如括号外有减号或除号的话一定要变号) 依据:乘法分配律⒊移项:把方程中含有未知数的项都移到方程的一边(一般是含有未知数的项移到方程左边,而把常数项移到右边)依据:等式的性质1⒋合并同类项:把方程化成ax=b(a≠0)的形式;依据:乘法分配律(逆用乘法分配律) ⒌系数化为1:在方程两边都除以未知数的系数a,得到方程的解x=b/依据:等式的性质2同解方程如果两个方程的解相同,那么这两个方程叫做同解方程。 方程的同解原理:⒈方程的两边都加或减同一个数或同一个等式所得的方程与原方程是同解方程。 ⒉方程的两边同乘或同除同一个不为0的数所得的方程与原方程是同解方程。 做一元一次方程应用题的重要方法:⒈认真审题(审题) ⒉分析已知和未知量 ⒊找一个合适的等量关系 ⒋设一个恰当的未知数  ⒌列出合理的方程 (列式) ⒍解出方程(解题)  ⒎检验 ⒏写出答案(作答)ax=b(a、b为常数)[3]解:当a≠0,b=0时,ax=0x=0(此种情况与下一种一样)当a≠0时,x=b/a。当a=0,b=0时,方程有无数个解(注意:这种情况不属于一元一次方程,而属于恒等方程)当a=0,b≠0时,方程无解(此种情况也不属于一元一次方程)例:(3x+1)/2-2=(3x-2)/10-(2x+3)/5去分母(方程两边同乘各分母的最小公倍数)得:5(3x+1)-10×2=(3x-2)-2(2x+3)去括号得:15x+5-20=3x-2-4x-6移项得:15x-3x+4x=-2-6-5+20合并同类项得:16x=7系数化为1得:x=7/16。字母公式(等式的性质)a=b a+c=b+c a-c=b-c (等式的性质1)a=b ac=bca=bc(c≠0)= a÷c=b÷c(等式的性质2)检验 算出后需检验的。求根公式由于一元一次方程是基本方程,故教科书上的解法只有上述的方法。但对于标准形式下的一元一次方程 aX+b=0可得出求根公式 X=-(b/a)
135 评论(8)

liuxy2001

解析几何中“设而不求”的妙用摘要】解析几何的综合问题,常常与直线和二次曲线的位置有关。如何避免求交点,从而简化计算,也就成了处理这类问题的难点和关键。本文谈了如何整体结构意义上的变式和整体思想在解析几何中”设而不求”的妙用。【关键词】解析几何;设而不求;直线;二次曲线解析几何的综合问题,常常与直线和二次曲线的位置有关。如何避免求交点,从而简化计算,也就成了处理这类问题的难点和关键。下面从六个方面举例,介绍“设而不求”这一方法,其实质是整体结构意义上的变式和整体思想的应用。与中点弦及弦的中点有关的问题例1:过点A(2,1)的直线与双曲线x2-y2/2=1,交于P1、P2两点,求弦P1P2的中点的P的轨迹方程。解:设P1(x1,y1),P2(x2,y2),则X21-Y21/2=1,X22-Y22/2=1两式作差并整理,得(y1-y2)/(x1-x2)=2·(x1+x2)/(y1+y2)。又设弦P1P2的中点P(x0,y0),因为Kp1p2=KAP,则(y0-1)/(x0-2)=2x0/y0,因此,所求中点P的轨迹方程是2x2-4x-y2+y=0例2:过点Q(4,1)作抛物线y2=8x的弦AB,恰被点Q所平分,求AB所在直线方程:解:设以Q为中点的弦AB端点坐标A(x1,y1),B(x2,y2),则有y21=8x1,y22=8x2,两式相减,得:(y1-y2)(y1+y2)=8(x1-x2),又∵x1+x2=8,y1+y2=2解K=y2-y1x2-x1=8y1+y2=4∴所求直线AB方程是:y-1=4(x-4),即4x-y-15=0。评注:问题虽然简单,但提供了一种有关中点及弦的中点问题求解的程序化方法:设弦的两个端点P1(x1,y1),P2(x2,y2),代入二次曲线方程中并作差,便可以得到一组关于y1-y2/x1-x2、x1+x2、y1+y2的关系式,利用它们的几何意义,即可以方便地得到问题之解。与对称性有关的问题例3:已知抛物线C:x-y2-2y=0上存在关于直线:L:y=x+m对称的相异两点,求m的取值范围解:设抛物线C上关于直线L对称的两点是A(x1,y1)、B(x2,y2)代入抛物线方程并作差,得y1-y2/x1-x·2(y1+y2)+2(y1-y2)/x1-x2=1∵y1-y2/x1-x2=-1,∴y1+y2=-3,又将A、B两点坐标分别入抛物线C和直线L的方程中并分别相加,得,x1+x2=y21+y22+2(y1+y2),y1+y2=x1+x2+2m,∴y21+y22=(y1+y2)-2m-2(y1+y2)=3-2m∴y21+y22>(y1+y2)2/2=9/2,即:∴3-2m>9/2,∴m<-3/4评注:通过“设点代点”,整体代换,利用基本不等式得到了一个关于m的不等式,从而寻找到了解决问题的突破口。曲线方程的探求问题例4:一条直线L被两条相交直线L1:4x+y+16=0和L2:3x-5y-6=0,截得的线段中点恰好是坐标原点,求直线L的方程:解:设L与L1,L2分别交于M(x0,y0)和N,∵M、N关于原点对称,∴N(-x0,-y0),从而有4x0+y0+6=0,-3x0+5y0-6=0,这两个方程相加,得x0+6y0=0,可见M(x0,y0)在直线x+6y=0上,并且这条直线经过原点,所以,所求直线L的方程为x+6y=0。评注:设而不求,并巧妙地利用对称性,灵活而又生动。定值和定点问题例5:过点M(-2,0)的直线L与椭圆C:x2+2y2=2交于P1、P2两点,线段P1P2的中点是P,设直线L的斜率为K(K≠0),OP的斜率为K1。(0为椭圆的中心
321 评论(15)

suguizhuan

0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。”
350 评论(8)

柚子12345

0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。生活中的数学 有一个谜语:有一样东西,看不见、摸不着,但它却无处不在,请问它是什么?谜底是:空气。而数学,也像空气一样,看不见,摸不着,但它却时时刻刻存在于我们身边。 奇妙的“黄金数” 取一条线段,在线段上找到一个点,使这个点将线段分成一长一短两部分,而长段与短段的比恰好等于整段与长段的比,这个点就是这条线段的黄金分割点。这个比值为:1:618…而618…这个数就被叫作“黄金数”。 有趣的事,这个数在生活中随处可见:人的肚脐是人体总长的黄金分割点;有些植物茎上相邻的两片叶子的夹角恰好是把圆周分成1:618…的两条半径的夹角。据研究发现,这种角度对植物通风和采光效果最佳。 建筑师们对数618…特别偏爱,无论是古埃及的金字塔,还是巴黎圣母院,或是近代的埃菲尔铁塔,都少不了618…这个数。人们还发现,一些名画,雕塑,摄影的主体大都在画面的618…处。音乐家们则认为将琴马放在琴弦的618…处会使琴声更柔和甜美。 数618…还使优选法成为可能。优选法是一种求最优化问题的方法。如在炼钢时需要加入某种化学元素来增加钢材的强度,假设已知在每吨钢中需加某化学元素的量在1000—2000克之间。为了求得最恰当的加入量,通常是取区间的中点进行试验,然后将实验结果分别与1000克与2000克时的实验结果作比较,从中选取强度较高的两点作为新的区间,再取新区间的中点做实验,直到得到最理想的效果为止。但这种方法效率不高,如果将试验点取在区间的618处,效率将大大提高,这种方法被称作“618法”,实践证明,对于一个因素的问题,用“618法”做16次试验,就可以达到前一种方法做2500次试验的效果! “黄金数”在生活中竟有如此多的实例和运用。或许,在它的身上,还有更多的奥秘,等待我们去探寻,使它能更好地为我们服务,为我们解决更多问题。 美妙的轴对称 如果在一个图形上能找到一条直线,将这个图形沿着条直线对这可以使两边完全重合,这样的图形就叫做轴对称图形,这条直线叫做对称轴。 如果仔细观察,可以发现飞机是一个标准的轴对称物体,俯视看,它的机翼、机身、机尾都呈左右对称。轴对称使它飞行起来更平稳,如果飞机没有轴对称,那飞行起来就会东倒西歪,那时,还有谁愿意乘飞机呢? 再仔细观察,不难发现有许多艺术品也成轴对称。举个最简单的例子:桥。它算是生活中最常见的艺术品了(应该算艺术品吧),就拿金华的桥来说:通济桥、金虹桥、双龙大桥、河磐桥。个个都呈轴对称。中国的古代建筑就更明显了,古代宫殿,基本上都呈轴对称。再说个有名的:北京城的布局。这可是最典型的轴对称布局了。它以故宫、天安门、人民英雄纪念碑、前门为中轴线成左右对称。将轴对称用在艺术上,能使艺术品看上去更优美。 轴对称还是一种生物现象:人的耳、眼、四肢、都是对称生长的。耳的轴对称,使我们听到的声音具有强烈的立体感,还可以确定声源的位置;而眼的对称,可以使我们看物体更准确。可见我们的生活离不开轴对称。 数学离我们很近,它体现在生活中的方方面面,我们离不开数学,数学,无处不在,上面只是两个极普通的例子,这样的例子根本举不完。我认为,生活中的数学能给人带来更多地发现。不过估计现在也没有用了。那么少的分要写那么多字。
208 评论(11)

相关问答